

Technische Dokumentation

PQP-179-P

Pumpenregelmodul für den offenen oder geschlossenen Kreis mit integrierter Leistungsendstufe und optional aktivierbarem Schieberlageregler für das Stellventil

Electronics Hydraulicsmeets meetsHydraulics Electronics

Inhaltsverzeichnis

1	Allge	emeine Informationen	4
	1.1	Bestellnummer	4
	1.2	Lieferumfang	4
	1.3	Zubehör	4
	1.4	Verwendete Symbole	5
	1.5	Impressum	5
	1.6	Sicherheitshinweise	6
2	Eige	enschaften	7
	2.1	Gerätebeschreibung	8
3	Anw	vendung und Einsatz	9
	3.1	Einbauvorschrift	9
	3.2	Funktionsweise	10
	3.3	Inbetriebnahme	11
	3.4	Polaritäten der Stellsignale	12
4	Tech	hnische Beschreibung	13
	4.1	Ein- und Ausgangssignale	13
	4.2	LED Definitionen	14
	4.3	Blockschaltbild	15
	4.4	Typische Verdrahtung	16
	4.5	Anschlussbeispiele	16
	4.6	Technische Daten	17
5	Para	ameter	18
	5.1	Parameterübersicht	18
	5.2	Basisparameter	21
	5.2.	1 MODE (Auswahl der anzuzeigenden Parametergruppe)	21
	5.2.2	- (-)	
	5.2.3	3 SENS (Sensorüberwachung)	21
	5.2.4	4 CTRLOUT (Wahl des Stellsignales)	22
	5.2.	5 LIM:XQ (Kabelbruchüberwachung Schwenkwinkelsensor)	22
	5.2.6	6 PL:CTRL (Leistungsbegrenzungsfunktion)	23
	5.2.7	7 FUNCTION (Gerätefunktion im System)	23
	5.3	Eingangssignalanpassung	23
	5.3.	1 SYS_RANGE (Systemdruck)	23
	5.3.2	2 SIGNAL (Typ des Eingangssignals)	24
	5.3.3	N_RANGE (Arbeitsbereich des Sensors)	24
	5.3.4	4 OFFSET:X (Sensoroffset)	25
	5.3.	5 WP:FIX (fester Drucksollwert)	25
	5.3.6	6 XQ (Skalierung Schwenkwinkelistwert)	25
	5.3.7	7 XV (Skalierung des Eingangs für die Schieberlage)	25
	5.3.8	8 SIGNAL:ANA (Art des Ausgangssignals)	26
	5.3.9	9 SEL15/16 (Signalauswahl)	26
	5.4	Reglerparametrierung	27
	5.4.	1 RAQ (Rampenfunktion Volumenstromsollwert)	27
	5.4.2	2 CORR:Q (Volumenstromkorrekturwert)	27
	5.4.3	3 CQ (PID-Reglerparametrierung Schwenkwinkel)	28
	5.4.4	4 RAP (Rampenfunktion Drucksollwert)	29
	5.4.	5 CP (PID-Reglerparametrierung Druckregler)	29
	5.4.6	6 PL (Leistungsbegrenzungsregelung)	31
	5.5	Ausgangssignalanpassung	32
	5.5.	1 MIN (Kompensation der Überdeckung)	32

	5.5.2	2 MAX (Ausgangsskalierung)	32
	5.5.3	TRIGGER (Ansprechschwelle der Überdeckungskompensation)	32
	5.5.4	POL:U (Polarität der Schwenkwinkelregelung)	33
	5.6	Schieberlageregler	33
	5.6.	1 PID Regler	33
	5.6.2	2 Integratorsteuerung	34
	5.6.3	3 VA:MIN (Mindestansteuerung)	35
	5.6.4	4 VA:MAX (Maximalansteuerung)	35
	5.6.	5 VA:TRIGGER (Ansprechschwelle der Mindestansteuerung)	35
	5.6.6	POL:UV (Polarität des Stellventils)	35
	5.7	Endstufenparameter	36
	5.7.	1 CURRENT (Nominaler Ausgangsstrom)	36
	5.7.2	2 DITHER (Dither Signal Einstellung)	36
	5.7.3	3 PWM (PWM Frequenz)	36
	5.7.4	4 ACC (Automatische Einstellung des Magnetstromreglers)	37
	5.7.	5 PPWM (Magnetstromreglereinstellung)	37
	5.7.6	6 IPWM (Magnetstromreglereinstellung)	37
	5.8	Sonderkommandos (TERMINAL)	38
	5.8.	1 VLVCTRL (Betriebsart Schieberlageregelung)	38
	5.8.2	EOUT (Ausgangssignal bei fehlender Bereitschaft)	38
	5.8.3	BIAG (Abfrage der letzten Abschaltursachen)	39
	5.9	Prozessdaten	39
3	Anh	ang	40
	6.1	Überwachte Fehlerquellen	40
	6.2	Fehlersuche	41
	6.3	Inbetriebnahme des Stellventil - Positionsreglers	42
	6.3.	1 Vorparametrierung	42
	6.3.2	2 Schritt 2: Skalierung des Wegsensors	42
	6.3.3	Schritt 3: Mindestansteuerung und Vorsteuerung einstellen	43
	6.3.4	Schritt 4: Lageregler optimieren	43
7	Noti	zen	46

1 Allgemeine Informationen

1.1 Bestellnummer

PQP-179-P Pumpenregelmodul zur Kaskadenregelung im offenen oder geschlossenen

Kreis mit analogem Steuerausgang, integrierter Leistungsendstufe und optio-

nal aktivierbarem Schieberlageregler für das Stellventil

Alternative Produkte:

PQP-176-P Pumpenregelmodul zur Kaskadenregelung im offenen Kreis mit analogem

Steuerausgang, integrierter Leistungsendstufe (analoge Sollwertvorgabe)

PQP-176-P-PFN Pumpenregelmodul zur Kaskadenregelung im offenen Kreis mit analogem

Steuerausgang, integrierter Leistungsendstufe und Profinet-Schnittstelle

1.2 Lieferumfang

Zum Lieferumfang gehört das Modul inkl. der zum Gehäuse gehörenden Klemmblöcke. Profibusstecker, Schnittstellenkabel und weitere ggf. benötigte Teile sind separat zu bestellen. Diese Dokumentation steht als PDF Datei auch im Internet unter www.w-e-st.de zur Verfügung.

1.3 Zubehör

WPC-300 - Bedienprogramm (auf unserer Homepage unter Produkte/Software)

LDT-401 - Modul zum Einlesen von zwei LVDT - Signalen, Rückwandbusanschluss

Als Programmierkabel kann jedes Standard-Kabel mit USB-A und USB-B Stecker verwendet werden.

1.4 Verwendete Symbole

Allgemeiner Hinweis

Sicherheitsrelevanter Hinweis

1.5 Impressum

W.E.St. Elektronik GmbH

Gewerbering 31 41372 Niederkrüchten

Tel.: +49 (0)2163 577355-0 Fax.: +49 (0)2163 577355 -11

Homepage: www.w-e-st.de
EMAIL: contact@w-e-st.de

Datum: 08.01.2025

Die hier beschriebenen Daten und Eigenschaften dienen nur der Produktbeschreibung. Der Anwender ist angehalten, diese Daten zu beurteilen und auf die Eignung für den Einsatzfall zu prüfen. Eine allgemeine Eignung kann aus diesem Dokument nicht abgeleitet werden. Technische Änderungen durch Weiterentwicklung des in dieser Anleitung beschriebenen Produktes behalten wir uns vor. Die technischen Angaben und Abmessungen sind unverbindlich. Es können daraus keinerlei Ansprüche abgeleitet werden.

Dieses Dokument ist urheberrechtlich geschützt.

1.6 Sicherheitshinweise

Bitte lesen Sie diese Dokumentation und Sicherheitshinweise sorgfältig. Dieses Dokument hilft Ihnen, den Einsatzbereich des Produktes zu definieren und die Inbetriebnahme durchzuführen. Zusätzliche Unterlagen (WPC-300 für die Inbetriebnahme Software) und Kenntnisse über die Anwendung sollten berücksichtigt werden bzw. vorhanden sein.

Allgemeine Regeln und Gesetze (je nach Land: z. B. Unfallverhütung und Umweltschutz) sind zu berücksichtigen.

Diese Module sind für hydraulische Anwendungen im offenen oder geschlossenen Regelkreis konzipiert. Durch Gerätefehler (in dem Modul oder an den hydraulischen Komponenten), Anwendungsfehler und elektrische Störungen kann es zu unkontrollierten Bewegungen kommen. Arbeiten am Antrieb bzw. an der Elektronik dürfen nur im ausgeschalteten und drucklosen Zustand durchgeführt werden.

Dieses Handbuch beschreibt ausschließlich die Funktionen und die elektrischen Anschlüsse dieser elektronischen Baugruppe. Zur Inbetriebnahme sind alle technischen Dokumente die das System betreffen zu berücksichtigen.

Anschluss und Inbetriebnahme dürfen nur durch ausgebildete Fachkräfte erfolgen. Die Betriebsanleitung ist sorgfältig durchzulesen. Die Einbauvorschrift und die Hinweise zur Inbetriebnahme sind zu beachten. Bei Nichtbeachtung der Anleitung, bei fehlerhafter Montage und/oder unsachgemäßer Handhabung erlöschen die Garantie- und Haftungsansprüche.

ACHTUNG!

Alle elektronischen Module werden in hoher Qualität gefertigt. Es kann jedoch nicht ausgeschlossen werden, dass es durch den Ausfall von Bauteilen zu Fehlfunktionen kommen kann. Das Gleiche gilt, trotz umfangreicher Tests, auch für die Software. Werden diese Geräte in sicherheitsrelevanten Anwendungen eingesetzt, so ist durch geeignete Maßnahmen außerhalb des Gerätes für die notwendige Sicherheit zu sorgen. Das Gleiche gilt für Störungen, die die Sicherheit beeinträchtigen. Für eventuell entstehende Schäden kann nicht gehaftet werden.

Weitere Hinweise

- Der Betrieb des Moduls ist nur bei Einhaltung der nationalen EMV Vorschriften erlaubt. Die Einhaltung der Vorschriften liegt in der Verantwortung des Anwenders.
- Das Gerät ist nur für den Einsatz im gewerblichen Bereich vorgesehen.
- Bei Nichtgebrauch ist das Modul vor Witterungseinflüssen, Verschmutzungen und mechanischen Beschädigungen zu schützen.
- Das Modul darf nicht in explosionsgefährdeter Umgebung eingesetzt werden.
- Die Lüftungsschlitze dürfen für eine ausreichende Kühlung nicht verdeckt werden.
- Die Entsorgung hat nach den nationalen gesetzlichen Bestimmungen zu erfolgen.

2 Eigenschaften

Diese Baugruppe stellt einen Pumpenregler für die Schwenkwinkel-, Druck- und Leistungsregelung von Regelpumpen dar.

Das Modul kann ein Wegeventil zur Schwenkwinkelverstellung an der Pumpe ansteuern. Es ist möglich, Ventile mit einem oder zwei Magneten zu steuern. Über einen Parameter kann die Endstufe deaktiviert werden, so dass der Anschluss eines Regelventils mit integrierter Elektronik an das Modul möglich ist.

Auch ist es möglich, einen internen Schieberlageregler für das Stellventil zu aktivieren, der 2 – magnetige Ventile mit elektrischer Rückmeldung der Schieberposition ansteuert.

Die Regelstruktur ist als Kaskadenregelung ausgeführt und so für viele verschiedene Pumpen der verschiedenen Hersteller geeignet. Das Schwenken über Null ist durch die Sollwertvorgabe im negativen Bereich möglich. In diesem Fall wird zur Druck- und Leistungsbegrenzung das Signal eines zweiten Drucktransmitters für diese Förderrichtung verwendet (geschlossener Kreis).

Bei Anwendungen im offenen Kreis ist auch ein sogenannter Mooring – Betrieb zum aktivem Druckabbau möglich, bei dem der Druckregler einen Fördersollwert im negativen Bereich vorgeben kann. Die untere Grenze für diese Funktion ist einstellbar.

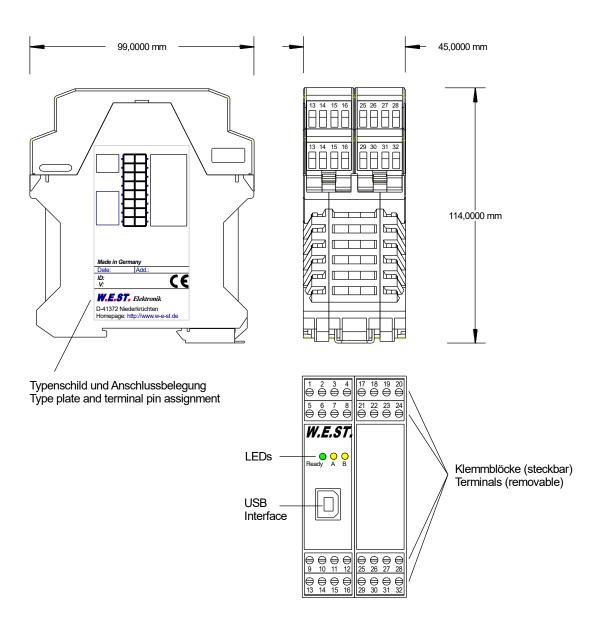
Die Soll- und Istwerte können sowohl als Spannungssignale im Bereich von 0... 10V bzw. auch als Stromsignale im Bereich von 4... 20mA eingelesen werden. Die Eingänge sind frei skalierbar, so dass auch individuelle Signalbereiche ausgewertet werden können.

Optional kann das Modul zusammen mit der Baugruppe LDT-401 betrieben werden und auf diese Weise den Schwenkwinkelistwert und/oder die Lage des Ventilschiebers einlesen. Die Verbindung erfolgt über den Rückwandbus, die dazu erforderlichen Stecker sind im Lieferumfang der LDT-401 enthalten.

Der Ausgangsstrom zu den Ventilspulen ist geregelt und somit unabhängig von der Versorgungsspannung und dem Magnetwiderstand. Die Ausgangsstufen sind kurzschlussfest und werden auf Kabelbruch zum Magneten überwacht. Im Fehlerfall werden die Endstufen abgeschaltet.

Die Bedienung ist einfach und problemorientiert aufgebaut, wodurch eine sehr kurze Einarbeitungszeit sichergestellt wird.

Typische Anwendungen: Schwenkwinkelregelung, Druckregelung und Leistungsregelung


Merkmale

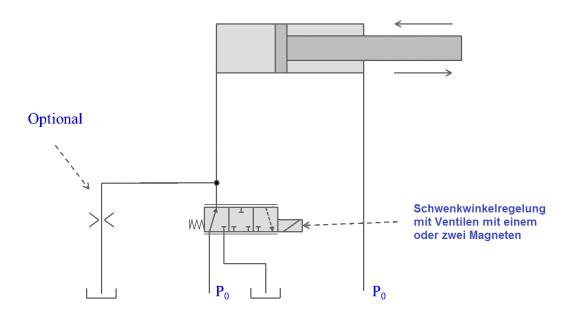
- Schwenkwinkel-, Druck- Leistungs- und Schieberlageregelung
- Für Pumpen im offenen oder geschlossenen Kreis
- Frei skalierbare analoge Eingänge, Möglichkeit zur Erweiterung mit einer LVDT Baugruppe
- Kompakter Aufbau
- Digitale reproduzierbare Einstellung
- Optimierte Regelfunktion
- Anwendungsorientierte Parametrierung
- Zwei Parametersätze für die Druckregelung anwählbar
- Schwenkwinkelbegrenzungsfunktion
- Integrierte Leistungsendstufe
- Alternativ analoge Stellgröße für Regelventile mit OBE
- Master Slave Funktion zur Ansteuerung mehrerer parallelgeschalteter Pumpen
- Fehler Diagnostik und erweiterte Funktionsüberprüfung
- Einfache Parametrierung mit der WPC-300 Software

2.1 Gerätebeschreibung

3 Anwendung und Einsatz

3.1 Einbauvorschrift

- Dieses Modul ist für den Einbau in einem geschirmten EMV-Gehäuse (Schaltschrank) vorgesehen.
 Alle nach außen führenden Leitungen sind abzuschirmen, wobei eine lückenlose Schirmung vorausgesetzt wird. Beim Einsatz unserer Steuer- und Regelmodule wird vorausgesetzt, dass keine starken elektromagnetischen Störquellen in der Nähe des Moduls installiert werden.
- Typischer Einbauplatz: 24 V Steuersignalbereich (nähe SPS)
 Durch die Anordnung der Geräte im Schaltschrank ist eine Trennung zwischen dem Leistungsteil und dem Signalteil sicherzustellen.
 Die Erfahrung zeigt, dass der Einbauraum nahe der SPS (24 V-Bereich) am besten geeignet ist. Alle digitalen und analogen Ein-und Ausgänge sind im Gerät mit Filter und Überspannungsschutz versehen.
- Das Modul ist entsprechend den Unterlagen und unter EMV-Gesichtspunkten zu montieren und zu verdrahten. Werden andere Verbraucher am selben Netzteil betrieben, so ist eine sternförmige Masseführung zu empfehlen. Folgende Punkte sind bei der Verdrahtung zu beachten:
 - Die Signalleitungen sind getrennt von leistungsführenden Leitungen zu verlegen.
 - Analoge Signalleitungen müssen abgeschirmt werden.
 - Alle anderen Leitungen sind im Fall starker Störquellen (Frequenzumrichter, Leistungsschütze) und Kabellängen > 3 m abzuschirmen. Bei hochfrequenter Einstrahlung können auch preiswerte Klappferrite verwendet werden.
 - Die Abschirmung ist mit PE (PE Klemme) möglichst nahe dem Modul zu verbinden. Die lokalen Anforderungen an die Abschirmung sind in jedem Fall zu berücksichtigen. Die Abschirmung ist an beiden Seiten mit PE zu verbinden. Bei Potentialunterschieden ist ein Potentialausgleich vorzusehen.
 - Bei größeren Leitungslängen (> 10 m) sind die jeweiligen Querschnitte und Abschirmungsmaßnahmen durch Fachpersonal zu bewerten (z. B. auf mögliche Störungen und Störquellen sowie bezüglich des Spannungsabfalls). Bei Leitungslängen über 40 m ist besondere Vorsicht geboten und ggf. Rücksprache mit dem Hersteller zu halten.
- Eine niederohmige Verbindung zwischen PE und der Tragschiene ist vorzusehen. Transiente Störspannungen werden von dem Modul direkt zur Tragschiene und somit zur lokalen Erdung geleitet.
- Die Spannungsversorgung sollte als geregeltes Netzteil (typisch: PELV System nach IEC364-4-4, sichere Kleinspannung) ausgeführt werden. Der niedrige Innenwiderstand geregelter Netzteile ermöglicht eine bessere Störspannungsableitung, wodurch sich die Signalqualität, insbesondere von hochauflösenden Sensoren, verbessert. Geschaltete Induktivitäten (Relais und Ventilspulen) an der gleichen Spannungsversorgung sind immer mit einem entsprechenden Überspannungsschutz direkt an
 der Spule zu beschalten.



3.2 Funktionsweise

Das hier beschriebene Modul realisiert eine Pumpenregelung für reversierbare oder nichtreversierbare Verstellpumpen durch die Ansteuerung des Schwenkwinkelventils. Ähnlich der Bewegung eines Zylinders bei einer Positioniersteuerung kann der Schwenkwinkel in beide Richtungen auf- und zugeschwenkt werden, um die gewünschte Sollposition respektive den gewünschten Öffnungsgrad zu erreichen. Die externe Vorgabe kann durch verschiedene Parameter und Funktionen beeinflusst werden. So kann ein Volumenstromkorrekturfaktor addiert werden, aber auch eine parametrierbare Begrenzungsfunktion eingreifen. Die integrierte Leistungsbegrenzungsfunktion, sowie der Druckregler, der als Kaskade zugeschaltet werden kann, können in beiden Förderrichtungen eingreifen. Die Druckbegrenzung wirkt jeweils auf den in Förderrichtung gemessenen Wert, die Leistungsbegrenzung bestimmt den maximal möglichen Volumenstrom aus der Druckdifferenz.

Infolge der relativ kleinen Masse ist die Eigenfrequenz des Stellgliedes hoch und das dynamische Verhalten wird weitestgehend vom Schwenkwinkelventil bestimmt. Daraus folgt, dass die Qualität der Regelung proportional zur Qualität und Leistungsfähigkeit des Ventils ist.

Der Ausgangsstrom zur Ansteuerung des Stellventils ist geregelt, wodurch eine hohe Genauigkeit und eine gute Dynamik erreicht werden.

Für Stellventile mit einer elektrischen Rückführung der Schieberposition verfügt das Gerät über einen optional aktivierbaren zusätzlichen Regler. In diesem Fall wird dem Magnetstromregler in einer weiteren Kaskade ein zusätzlicher Schieberlageregler übergeordnet. Dieser Regler verfügt über eine Vorsteuerung zur schnellen Reaktion auf Sollwertänderungen und einen schaltenden Integrator mit parametrierbarer Totzone zur Vermeidung von Grenzzyklen im Arbeitspunkt.

3.3 Inbetriebnahme

Schritt	Tätigkeit
Installation	Installieren Sie das Gerät entsprechend dem Blockschaltbild. Achten Sie dabei auf die korrekte Verdrahtung und eine gute Abschirmung der Signale. Das Gerät muss in einem geschützten Gehäuse (Schaltschrank oder Ähnliches) installiert werden.
Erstes Einschalten	Sorgen Sie dafür, dass es am Antrieb zu keinen ungewollten Bewegungen kommen kann (z.B. Abschalten der Hydraulik). Schließen Sie ein Strommessgerät an und überprüfen Sie die Stromaufnahme des Gerätes. Ist sie höher als angegeben, so liegen Verdrahtungsfehler vor. Schalten Sie das Gerät unmittelbar ab und überprüfen Sie die Verdrahtung.
Aufbau der Kommunikation	Ist die Stromaufnahme korrekt, so sollte der PC (das Notebook) über die serielle Schnittstelle angeschlossen werden. Den Aufbau der Kommunikation entnehmen Sie den Unterlagen des WPC-300 Programms. Die weitere Inbetriebnahme und Diagnose werden durch diese Bediensoftware unterstützt.
Vorparametrierung	Die Vorparametrierung ist bei der komplexen Pumpenregelung absolut notwendig. Die Wahl des Ausgangssignals, Einstellung der Ventilanpassung und Skalierung der analogen Eingänge sind unverzichtbar.
Integrierten Positionsregler für das Stellventil einstellen, falls aktiviert	Dieser Schritt ist an dieser Stelle zwingend nötig, da man kaskadierte Regler immer beginnend mit der innersten Schleife einstellen sollte. Nähere Hinweise siehe Kapitel 6.3.
Hydraulik einschalten	Jetzt kann die Hydraulik eingeschaltet werden. Da das Modul noch kein Signal generiert, sollte keine (unerwartete) Reaktion am Antrieb auftreten.
Freigabe aktivieren	ACHTUNG! Die Ausgangsstufe wird mit dem ENABLE Signal aktiviert. Je nach gewählten Einstellungen findet nun eine Ansteuerung statt. Durch falsche Parametrierung kann es zu einem unkontrollierten Verhalten kommen. Die Schwenkwinkelregelung und Leistungsbegrenzungsfunktion sind nun aktiv.
Schwenkwinkelregler opti- mieren	Führen Sie Sollwertsprünge für die Liefermenge durch und optimieren Sie jetzt die Einstellung des Schwenkwinkelreglers. Da es sich um eine Regelstrecke mit integrierendem Verhalten handelt, ist es besonders wichtig die Proportionalverstärkung und die Überdeckungskompensation des Stellventils (falls nötig) gut einzustellen.
Druckregler aktivieren	Mit dem ENABLE P Signal wird der <i>Druckregler</i> aktiviert. Das System arbeitet nun auch im geschlossenen Regelkreis für die Druckregelung (PQ Betrieb). ACHTUNG! Durch falsche Parametrierung kann es zu einem unkontrollierten Verhalten kommen.
Parametrierung der Druckre- gelung, ggf. auch der Leis- tungsbegrenzung optimieren	Optimieren Sie jetzt die Regelparameter entsprechend Ihrer Anwendung bzw. Ihren Anforderungen.

3.4 Polaritäten der Stellsignale

Da in diesem Gerät bis zu vier Regelkreise kaskadiert werden, ist besonderes Augenmerk auf die richtige Polarität und damit Wirkrichtung der einzelnen Kreise zu legen.

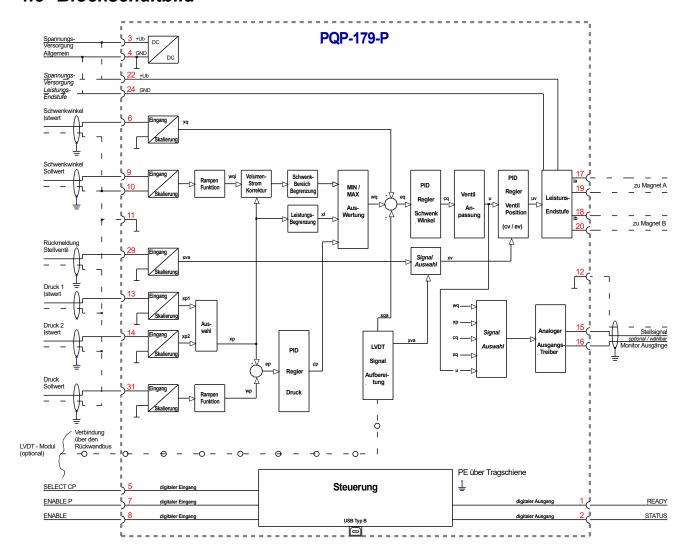
Die Wirkrichtung der obersten Ebene (Druckregelung) ist eindeutig: Ein hoher Druck in Förderrichtung verringert den Schwenkwinkel in diese Richtung. Es ist hier lediglich darauf zu achten, dass der Sensor am Eingang für X1 bei Anwendungen im geschlossenen Kreis auf der Druckseite bei positivem Schwenkwinkel misst.

Um die Verhältnisse möglichst einfach zu halten, ist es sinnvoll das Eingangs- bzw. Sollwertsignal des Stellventils so zu skalieren, dass ein positiver Wert von XV bzw. U ein Aufschwenken der Pumpe in positiver Förderrichtung bewirkt. Dies sollte ebenfalls mit einem positiven Stellsignal zur Endstufe UV korrespondieren. Falls die Ansteuerung der Stellventilmagnete bei positivem UV ein fallendes Signal XV erzeugt, ist bevorzugt auf der Verdrahtungsseite Abhilfe zu schaffen durch ein Vertauschen der Magnetanschlüsse Magnet A/B. Sollte dies zu aufwändig sein, kann man mit dem Parameter POL:UV diesen Tausch signalseitig vor der Endstufe vornehmen. Der Parameter POL:U sollte hingegen nur dann auf negative Polarität geändert werden, wenn die selbe Situation bei Verwendung eines Stellventils ohne Wegrückführung auftritt oder ein analoger Ausgangswert für ein Ventil mit OBE invertiert werden muss, um die die richtige Reaktion hervorzurufen (U > 0 -> XQ steigt an, s.o.).

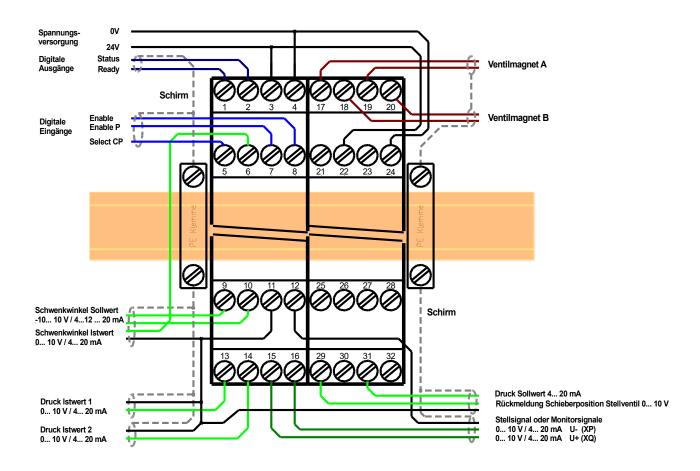
4 Technische Beschreibung

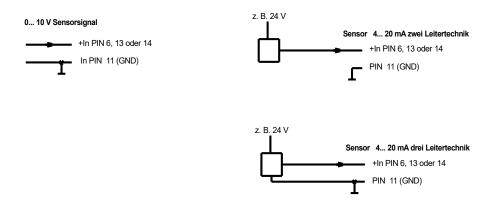
4.1 Ein- und Ausgangssignale

Anschluss	Versorgung
PIN 3	Spannungsversorgung (siehe technische Daten)
PIN 22	Spannungsversorgung (siehe technische Daten) für die Leistungsendstufe. Die Endstufe kann hier separat spannungsfrei geschaltet werden.
PIN 4	0 V (GND) Anschluss Versorgungsspannung.
PIN 24	0 V (GND) Anschluss für die Leistungsendstufe.
Anschluss	Analoge Signale
PIN 6	Schwenkwinkel Istwert (XQ), Signalbereich 0 10 V oder 4 20 mA, skalierbar.
PIN 9	(+) Schwenkwinkel Sollwert (WQI), Signalbereich -10 10 V oder 41220 mA.
PIN 10	(-) Schwenkwinkel Sollwert, bei unipolaren Signalen mit 0 V zu verbinden.
PIN 13	Druck Istwert (XP1), Signalbereich 0 10 V oder 4 20 mA, skalierbar.
PIN 14	Druck Istwert (XP2), Signalbereich 0 10 V oder 4 20 mA, skalierbar.
PIN 29	Lageistwert des Stellventils, Signalbereich 0 10 V
PIN 31	Druck Sollwert (WP), Signalbereich 4 20 mA.
PIN 11	0V (GND) Referenzpotential für analoge Eingangssignale.
PIN 12	0V (GND) Referenzpotential für analoge Ausgangssignale.
PIN 15	Steuerausgang + (U) oder Monitorsignal, 0 10V oder 4 20mA
PIN 16	Steuerausgang - (U) oder Monitorsignal, 0 10V oder 4 20mA
PIN 30	0V (GND)
PIN 32	0V (GND)
Anschluss	Digitale Ein- und Ausgänge
PIN 8	ENABLE Eingang: Allgemeine Freigabe der Anwendung, Schwenkwinkel (Q) Regler wird aktiviert.
PIN 7	ENABLE P Eingang: Start des Druckreglers (P).
PIN 5	SELECT CP Eingang: Wahl des Parametersatzes für den Druckregler (ON = CP2).
PIN 1	READY Ausgang: ON: Modul ist freigegeben, es liegt kein erkennbarer Fehler vor. OFF: Kein Enable vorhanden oder ein Fehler wurde erkannt.
PIN 2	STATUS Ausgang: ON: Modul ist in Leistungsbegrenzung. OFF: Leistungsbegrenzung nicht aktiv.
Anschluss	Magnetventilausgänge
PIN 17 / 19	Magnet A


4.2 LED Definitionen

LEDs	Beschreibung	Beschreibung der LED Funktion			
GRÜN	Identisch mit de	m READY Ausgang.			
	AUS:	Keine Stromversorgung oder ENABLE ist nicht aktiviert.			
	AN:	System ist betriebsbereit.			
	Blinkend:	Fehlerzustand Nicht aktiv wenn SENS = OFF.			
GELB A	AUS:	Leistung wird nicht begrenzt.			
	AN:	System in Leistungsbegrenzung.			
GELB B	AUS:	Keine Druckbegrenzung aktiv.			
	AN:	System in Druckbegrenzung.			
	Fehlermeldungen				
GRÜN + GELB	Lauflicht (über alle LEDs): Der Bootloader ist aktiv! Keine normalen Funktionen sind möglich.				
	2. Alle 6 s blinken alle LEDs dreimal kurz auf: Ein interner Datenfehler wurde entdeckt und automatisch behoben! Das Modul funktioniert weiterhin ordnungsgemäß. Um die Fehlermeldung zu quittieren, muss die Stromversorgung zum Modul einmal kurz abgeschaltet werden.				
GELB + GELB	Parameterdater	ben LEDs blinken abwechselnd im 1 s Takt: Die nichtflüchtig gespeicherten is sind inkonsistent! Um diesen Fehler zu quittieren, müssen die Daten mittels hls / Buttons im WPC gesichert werden.			


4.3 Blockschaltbild



4.4 Typische Verdrahtung

4.5 Anschlussbeispiele

4.6 Technische Daten

Versorgungsspannung (U₅)	[VDC]	12 30 (inkl. Rippel)
Leistungsaufnahme	[W]	max. 2,7 + Leistung der angeschlossenen Spulen
Externe Absicherung	[A]	3 mittel träge
Digitale Eingänge OFF ON Eingangswiderstand	[V] [V] [kOhm]	< 2 > 10 50
Digitale Ausgänge OFF ON Maximaler Ausgangsstrom	[V] [V] [mA]	< 2 max. U _b 50 Unipolar / differenziell
Analoge Eingänge Spannung Eingangswiderstand Signalauflösung Strom Bürde Signalauflösung	[V] [kOhm] [%] [mA] [Ohm]	0 10 / -10 10 32 0,003 incl. Oversampling 4 20 240 / 390 (PIN31) 0,006 incl. Oversampling
Analoge Ausgänge Spannung Maximale Last Strom Maximale Last Signalauflösung	[V] [mA] [mA] [Ohm] [%]	0 10, +/- 10 differenziell 10 4 20 390 0,007
PWM Leistungsausgänge Maximaler Ausgangsstrom Frequenz	[A] [Hz]	kabelbruch- und kurzschlussüberwacht 2,6 61 2604 in definierten Stufen wählbar
Regler Abtastzeiten Magnetstromregler Signalverarbeitung	[µs] [ms]	125 1
Serielle Schnittstelle Übertragungsrate	- [kBaud]	USB - virtueller COM Port 9,6 115,2
Gehäuse Material Brennbarkeitsklasse	-	Snap-On Modul nach EN 50022 Polyamid PA 6.6 V0 (UL94)
Gewicht	[kg]	0,280
Schutzklasse Temperaturbereich Lagertemperatur Luftfeuchtigkeit	[IP] [°C] [°C] [%]	20 -20 60 -20 70 < 95 (nicht kondensierend)
Anschlüsse Kommunikation Steckverbinder PE	-	USB Typ B 4 pol. Schraubanschlüsse mit Zughülse über die DIN Tragschiene
EMV	-	EN IEC 61000-6-2:2019 EN IEC 61000-6-4:2019

5 Parameter

5.1 Parameterübersicht

Gruppe	Kommando	Werksein- stellung	Einheit	Beschreibung			
	MODE	SYSTEM	-	Sichtbare Parametergruppe			
Basisparam	Basisparameter (SYSTEM)						
	LG	EN	-	Sprachumschaltung			
	SENS	ON	-	Fehlerüberwachung			
System	nkonfiguration						
<u> </u>	CTRLOUT	2SOL	-	Konfiguration des Stellsignals			
	LIM: XQ	0	0,01 %	Kabelbruch Überwachung des Schwenkwinkelsensors			
	PL:CTRL	OFF	-	Aktivierung Leistungsbegrenzungsfunktion			
	FUNCTION	STA	-	Gerätefunktion im System			
Eingangssig	gnalanpassung (IO	_CONF)					
Drucks	sollwert						
	SIGNAL:WP	I4-20	-	Typ des Sensorsignals			
	SYS_RANGE	100	bar	Vorgabe des Systemdrucks			
	WP:FIX	100	bar	Fester Drucksollwert			
Drucki	stwert 1						
<u> </u>	SIGNAL:XP1	U0-10	-	Typ des Sensorsignals			
	N_RANGE:XP1	100	bar	Nenndruck des Sensors			
	OFFSET:XP1	0	mbar	Sensor Offset			
Drucki	stwert 2						
<u> </u>	SIGNAL: XP2	U0-10	-	Typ des Sensorsignals			
	N_RANGE: XP2	100	bar	Nenndruck des Sensors			
	OFFSET: XP2	0	mbar	Sensor Offset			
Schwe	enkwinkelsollwert						
	SIGNAL: WQ	U0-10	-	Typ des Sollwertsignals			
Schwe	enkwinkelistwert						
	SIGNAL: XQ	U0-10	-	Typ des Eingangssignals			
	ZERO: XQ	5000	0,01 %	Skalierung Schwenkwinkelsensorsignal			
	MAX: XQ	10000	0,01 %	Granding Gerwerkwirkelsensorstyrial			
Rückm	neldung Schieberlag	e Stellventil					
	SIGNAL:XV	U0-10	-	Typ des Eingangssignals			
	ZERO: XV	5000	0,01 %	Skalierung Schieberlagesensorsignal			
	MAX: XV	10000	0,01 %				
Ausgangssignale (IO_CONF)							
	SIGNAL: ANA	V	-	Art des Ausgangssignals			
	SEL15	Ü	-	Signalauswahl für Pin 15			
	SEL16	U	-	Signalauswahl für Pin 16			

Gruppe Kommando		Werksein- stellung	Einheit	Beschreibung	
Reglerparametrierung (Q_CTRL / P_CTRL)					
Schwenkwinkelsollwert					
RAQ:1		100	ms		
	RAQ:2	100	ms		
	RAQ:3	100	ms	Rampenzeiten Volumenstromsollwert	
	RAQ:4	100	ms		
	CORR:Q	0	0,01 %	Volumenstromkorrekturfaktor	
Schwe	nkwinkelregler				
	CQ:FF	5000	0,01 %	Offsetwert für Nullpunkt von einmagnetigen Ventilen	
	CQ:P	100	0,01		
	CQ:I	4000	0,1 ms		
	CQ:I_LIM	2500	0,01 %	PID Regler zur Schwenkwinkelregelung	
	CQ:D	0	0,1 ms		
	CQ:T1	10	0,1 ms		
Drucks	sollwert				
	RAP:UP	100	ms	Domnonzoiton Drugkoelluvert W/D	
	RAP:DOWN	100	ms	Rampenzeiten Drucksollwert WP	
Druckr	egler				
·-	CP:LLIM	0	0,01 %	Untere Grenze für den Druckregler	
	CP1:P	100	0,01		
	CP1:I	4000	0,1 ms		
	CP1:I_ACT	0	0,01 %	PID Regler zur Druckregelung	
	CP1:D	0	0,1 ms	Parametersatz 1	
	CP1:T1	10	0,1 ms		
	CP2:P	100	0,01		
	CP2:I	4000	0,1 ms		
	CP2:I_ACT	0	0,01 %	PID Regler zur Druckregelung	
	CP2:D	0	0,1 ms	Parametersatz 2	
	CP2:T1	10	0,1 ms		
Leist	tung				
	PL:RPM	1500	1/min		
	PL:QMAX	100	cm³		
	PL:EFF	7850	0,01 %	Leistungsbegrenzungsfunktion	
	PL:PL	318	0,1 kW		
	PL:T1	500	0,1 ms		
Ausgangss	ignalanpassun	g (Q_CTRL)			
	MIN:A	0	0,01 %	12	
	MIN:B	0	0,01 %	Kennlinienlinearisierung / Überdeckungskompensation	
	MAX:A	10000	0,01 %		
	MAX:B	10000	0,01 %	Skalierung des maximalen Ausgangssignals	
	TRIGGER	200	0,01 %	Ansprechschwelle der Überdeckungskompensation	
	POL:U	+	+/-	Polarity of the swivel angle control	

Reglerpara	metrierung – Sch	ieberlage (\	/_CTRL)			
PID R	PID Regler					
CV:P		100	0,01	P Verstärkung		
	CV:I	4000	0,1 ms	I Anteil, Nachstellzeit		
	CV:D	C	. ,	D Anteil, Vorhaltezeit		
	CV:D_T1	500		D Anteil Filter		
	CV:FF	8000	0,01 %	Vorsteuerung		
Integra	atorsteuerung		T.			
	CV:I_LIM	2500	0,01 %	Begrenzung		
	CV:I_ACT	10000	0,01 %	Aktivierungsschwelle		
	CV: I_DZ	С	0,01 %	Totzone		
Linear	risierung					
	VA:MIN:A	C	0,01 %	Mindestansteuerung (für die Federvorspannung)		
	VA:MIN:B	С	0,01 %	willidestalistederung (tur die Federvorspallitung)		
	VA:MAX:A	10000	0,01 %	Maximalansteuerung		
VA:MAX:B		10000	0,01 %	Waximalansteuerung		
VA:TRIGGER		200	0,01 %	Ansprechschwelle der Mindestansteuerung		
	POL:UV	+	+/-	Polarität des Stellventils		
Endstufenp	parameter (IO_CO	NF)				
	CURRENT	1000	mA	Nennstrom des Magneten		
	DFREQ	121	Hz	Dither Frequenz		
	DAMPL	500	0,01 %	Dither Amplitude bezogen auf den Nennstrom		
	PWM	2604	Hz	PWM Frequenz		
	ACC	ON	_	Automatische Einstellung des Magnetstromreglers		
	PPWM	7	-	Magnetstromregler		
	IPWM	40	_	Magnetationnegici		
Sonderkommandos (TERMINAL)						
	VLVCTRL	ON	-	Betriebsart Schieberlageregelung Stellventil		
	EOUT	0	0,01 %	Ausgangssignal bei fehlender Bereitschaft		
	DIAG	-	-			

5.2 Basisparameter

5.2.1 MODE (Auswahl der anzuzeigenden Parametergruppe)

Kommando		Parameter		Gruppe
MODE	Х	x= SYSTEM IO_CONF Q_CTRL	_	-
		P_CTRL V_CTRL ALL		

Über dieses Kommando wird die Parametertabelle definiert. Es werden zur besseren Übersicht nur die Parameter der ausgewählten Gruppe angezeigt. Es können aber auch alle aktiven Parameter angezeigt werden.

Bedeutung der Gruppennamen:

SYSTEM allgemeine, übergreifende Einstellungen

IO_CONF Einstellungen zu den Ein- und Ausgangssignalen Q_CTRL Schwenkwinkelregler und Ausganssignalanpassung

P_CTRL Druck- und Leistungsregler V_CTRL Ventilschieberlageregelung

Die beiden Gruppen P_CTRL und V_CTRL enthalten Parameter, die funktionsabhängig komplett ausgeblendet werden können, so dass diese Gruppen dann keinen Inhalt mehr haben. Beispielsweise ist bei deaktiviertem Schieberlageregler (CTRLOUT ungleich 2SCL) dies Gruppe V_CTRL leer.

5.2.2 LG (Umschaltung der Sprache für die Hilfstexte)

Kommando		o Parameter		Einheit	Gruppe
L	G	Х	x= DE GB	-	SYSTEM

Es kann für die Hilfstexte die englische oder deutsche Sprache gewählt werden.

5.2.3 SENS (Sensorüberwachung)

Kommando		Parameter	Einheit	Gruppe
SENS	Х	x= ON OFF AUTO	_	SYSTEM

Über dieses Kommando werden Überwachungsfunktionen (4... 20 mA Sensoren, Magnetstromüberwachungen, Signalbereiche und interne Modulüberwachungen) aktiviert bzw. deaktiviert.

ON: Alle Funktionen werden überwacht, die erkannten Fehler können durch Deaktivieren des

ENABLE Eingangs gelöscht werden.

OFF: Keine Überwachungsfunktion ist aktiv.

AUTO: AUTO RESET Modus, alle Funktionen werden überwacht. Nachdem der Fehlerzustand nicht

mehr anliegt, geht das Modul automatisch in den normalen Betriebszustand über.

Normalerweise ist die Überwachungsfunktion immer aktiv, da sonst keine Fehler über den Ausgang READY signalisiert werden. Zur Fehlersuche kann sie aber deaktiviert werden.

5.2.4 CTRLOUT (Wahl des Stellsignales)

Kommando	Parameter	Einheit	Gruppe
CTRLOUT x	x= ANA 1SOL 2SOL 2SCL	-	SYSTEM

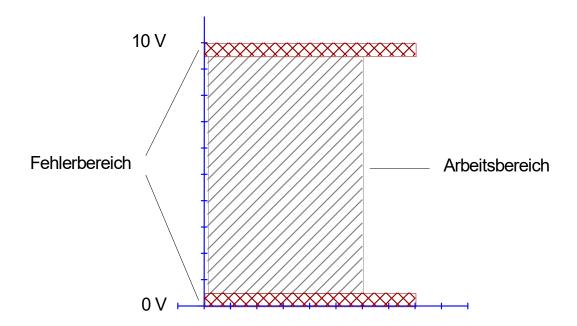
Die Ausgangsstufe ist universell für Ventile mit OBE oder für Standardventile (4/3 Wegeventile) mit einem oder mit zwei Magneten ausgelegt.

ANA: Stellsignal auf universellen Analogausgang zur Ansteuerung von Ventilen mit OBE.

1SOL: Stellsignal auf Leistungsendstufe für einmagnetige Wegeventile mit Offset.

2SOL: Stellsignal auf Leistungsendstufe für zweimagnetige Wegeventile.

2SCL: Stellsignal auf Leistungsendstufe für zweimagnetige Wegeventile mit Wegrückführung. Die Aus-


wahl dieser Option aktiviert den Ventilpositionsregler und die zugehörenden Parameter.

5.2.5 LIM:XQ (Kabelbruchüberwachung Schwenkwinkelsensor)

Kommando	do Parameter		Gruppe
LIM:XQ x	x= 0 2000	0,01 mV	SYSTEM

Dieser Parameter definiert die Schwelle über 0 V und unter 10 V ab der das Signal als fehlerhaft definiert werden soll. Bei Parametrierung auf 0 ist die Überwachung deaktiviert.

Wird ein Stromsignal gewählt, ist die Überwachung automatisch aktiv (abhängig von SENS). Ein Signal unter 3 mA wird immer als Kabelbruch und somit als Fehler gewertet.

5.2.6 PL:CTRL (Leistungsbegrenzungsfunktion)

Kommando		Parameter	Einheit	Gruppe
PL:CTRL	Х	x= OFF ON	-	SYSTEM

Mit diesem Kommando wird die Leistungsbegrenzung ein- bzw. ausgeschaltet und konfiguriert.

OFF: Die Leistungsbegrenzung ist ausgeschaltet.

ON: Der berechnete Leistungswert XL kann den Schwenkwinkelsollwert begrenzen.

5.2.7 FUNCTION (Gerätefunktion im System)

Kommando		Parameter	Einheit	Gruppe
FUNCTION	Х	x= STD MASTER SLAVE	1	SYSTEM

Mit diesem Kommando gibt man an, welche Funktion das Gerät im System übernimmt:

STD: Einzelbetrieb, das Gerät steuert eine einzelne Pumpe an

MASTER: Das Gerät ist Master in einem System, in dem mehrere Pumpen parallelgeschaltet sind. Die

Druckregelung und Aufbereitung des Stellwinkelsollwertes wird von dieser Einheit übernommen. Die Ausgänge an den Pins 15/16 sind fest auf +/- 10V und Ausgabe von wq parametriert.

SLAVE: Das Gerät ist Slave in einem System, in dem mehrere Pumpen parallelgeschaltet sind. Die

Druckregelung ist inaktiv, ebenso die Sollwertrampe für den Schwenkwinkel. Die Leistungsbe-

grenzung ist aktiv, wenn mindestens ein Drucksensor angeschlossen ist.

5.3 Eingangssignalanpassung

5.3.1 SYS_RANGE (Systemdruck)

Kommando		Parameter	Einheit	Gruppe
SYS_RANGE	Х	x= 10 1000	bar	IO_CONF

Über dieses Kommando wird der Systemdruck, der 100 % des Eingangssignals entspricht, vorgegeben. Fehlerhafte Vorgaben führen zu einer fehlerhaften Systemeinstellung und abhängige Parameter können nicht korrekt berechnet werden.

5.3.2 SIGNAL (Typ des Eingangssignals)

Kommando		Parameter	Einheit	Gruppe
SIGNAL:XQ SIGNAL:XV	X	x= U0-10 I4-20 LVDT x= U0-10 LVDT	-	IO_CONF
SIGNAL:WQ	х	x= 00-10 LVDT x= 0FF U0-10 U+- 10 I4-20 I4-12- 20 U10-0 I20-4		
SIGNAL:XP1 SIGNAL:XP2	х	x= OFF U0-10 I4-20 U10-0 I20-4		

Über dieses Kommando wird der Typ des Eingangssignals (Strom oder Spannung) der analogen Eingänge definiert. Gleichzeitig kann teilweise die Signalrichtung umgekehrt werden. Dieses Kommando steht für die Signale WQ, XQ, XP1 und XP2 zur Verfügung.

Besonderheit SIGNAL:WQ

Durch die Auswahl eines bipolaren Bereichs (U+-10 oder I4-12-20) wird festgelegt, dass eine Schwenkwinkelvorgabe in den negativen Bereich hinein möglich ist. Somit ist der Regler für Systeme im geschlossenen Hydraulischen Kreis vorgesehen.

Besonderheit SIGNAL:XQ, SIGNAL:XV

Diese Signale können auch als LVDT – Signale aus der Zusatzbaugruppe LDT-401 eingelesen werden. Auch in diesem Fall muss ein Rohwert des Messignals entsprechend skaliert werden. Die Rohwerte der LVDT – Messung können als XQA und XVA im Monitorfenster beobachtet werden.

Druckistwert XP2:

Sollte nur ein Drucksensor zum Einsatz kommen, der durch eine entsprechende hydraulische Verschaltung stets den Druck in Förderrichtung erfasst, wird dieser an den Eingang für XP1 angeschlossen und SIGNAL:XP2 = OFF parametriert. Soll hingegen keine Druckregelung oder Leistungsbegrenzung in einer der beiden Förderrichtungen stattfinden, ist der zugehörende Eingang auf "U0-10" zu parametrieren aber unverbunden zu lassen.

5.3.3 N_RANGE (Arbeitsbereich des Sensors)

Kommando	Parameter	Einheit	Gruppe
N_RANGE:XP1/2 x	x= 10 1000	bar	IO_CONF

Über dieses Kommando wird der nominale Arbeitsbereich der Sensoren definiert. Fehlerhafte Vorgaben führen zu einer fehlerhaften Systemeinstellung und abhängigen Parameter können nicht korrekt berechnet werden.

5.3.4 **OFFSET:X (Sensoroffset)**

Kommando		Parameter	Einheit	Gruppe
OFFSET:XP1/2	Х	x= -60000 60000	mbar	IO_CONF

Über dieses Kommando wird der Nullpunkt der Sensoren eingestellt.

5.3.5 **WP:FIX (fester Drucksollwert)**

Kommando	Parameter	Einheit	Gruppe
WP:FIX x	x= 10 1000	bar	IO_CONF

Über dieses Kommando wird ein fester Drucksollwert vorgeben, falls der Hardwareeingang an Klemme 31 nicht verwendet werden soll (SIGNAL:WP = OFF). Obere Grenze ist der Systemdruck SYS_RANGE. Wird der Hardwareeingang verwendet, hat dieser Wert keine Funktion und wird automatisch auf den Wert von SYS_RANGE gesetzt.

5.3.6 XQ (Skalierung Schwenkwinkelistwert)

Kommando		Parameter	Einheit	Mode
ZERO:XQ	Х	x= 0 10000	0,01 %	IO_CONF
MAX:XQ	Х	x= 0 10000	0,01 %	

Der Sensor an der Pumpe liefert ein unipolares Signal 0...10 V oder 4...20 mA. Dieses Signal kann mit den beiden hier zur Verfügung gestellten Parametern passend skaliert werden. Es ist anzugeben, welcher Eingangswert den tatsächlichen Positionen von 100% (MAX:XQ) und 0% (ZERO:XQ) Schwenkwinkel entspricht. Dies erlaubt auch negative Istwerte. Der Eingangswert vor der Skalierung steht als Prozessdatum XQA für die Analogsignale bzw. für den optionalen LVDT - Eingang LD1 dauerhaft zur Verfügung.

5.3.7 XV (Skalierung des Eingangs für die Schieberlage)

Kommando		Parameter	Einheit	Mode
ZERO:XV	Х	x= 0 10000	0,01 %	IO_CONF
MAX:XV	X	x= 0 10000	0,01 %	

Der Sensor am Ventil liefert ein unipolares Signal 0...10 V oder wird über einen LVDT – Sensor am Kanal LD2 erfasst. Das Rohsignal XVA kann mit den beiden hier zur Verfügung gestellten Parametern passend skaliert werden. Es ist anzugeben, welcher Eingangswert der maximalen Öffnung in aufsteuernder Richtung (MAX:XV) und Nulllage (ZERO:XV) entspricht.

Zur Einstellung dieser Werte siehe auch Abschnitt 6.3 (Inbetriebnahme).

5.3.8 SIGNAL: ANA (Art des Ausgangssignals)

Kommando	Parameter	Einheit	Gruppe
SIGNAL:ANA x	x= V C	-	IO_CONF

Mit diesem Kommando gibt man an, ob Spannungs- oder Stromsignale ausgegeben werden

Da es sich hauptsächlich um bipolare Signale handelt, wird bei Anwahl der Einstellung "**V**" automatisch die Möglichkeit einer Signalauswahl an PIN16 deaktiviert (diese wird mit PIN15 gleichgesetzt). Der Ausgang ist nun ein Differenzausgang, PIN16 wird für den negativen Signalanteil -100% … 0 % abgebildet auf 10V – 0V an diesem Ausgang genutzt.

Zusammen mit der Ansteuerung von Pin 15 ergibt sich für die Spannungsdifferenz zwischen Pin 15 (+) und Pin 16 (-):

Delta U -10V ... 0 ... 10 V

Interessiert nur der positive Bereich des Signals, genügt es PIN15 zu erfassen.

Einstellung "C":

Beide Ausgangspins sind unabhängig zuordbar.

Skalierung für bipolare Signale WQ / CQ / XQ / U: 4–12–20 mA entsprechen -100% ... 0 ... 100%

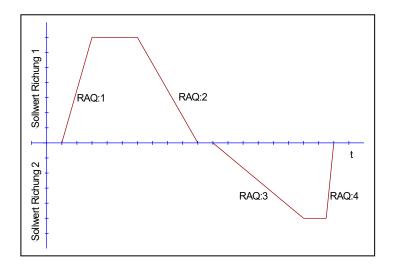
Unipolares Signal XP: 4-20mA entsprechen 0 – 100%. Bezug: SYS_RANGE

5.3.9 **SEL15/16 (Signalauswahl)**

Kommando		Parameter	Einheit	Gruppe
SEL15/16	Х	x= WQ XP CQ XQ U	_	IO_CONF

Mit diesen Kommandos gibt man an, welche Signale an den Analogausgängen ausgegeben werden. Die Signalnamen entsprechen den Prozessgrößen (siehe Blockschaltbild).

Im MASTER – Betrieb ist es erforderlich, den Schwenkwinkelsollwert WQ an Pin 15/16 auszugeben. Dies geschieht immer als Spannungssignal U+/-10V. Somit werden diese Parameter in der Betriebsart MASTER fest auf "WQ" gesetzt und ggf. auch ausgeblendet. Gleiches gilt für SIGNAL:15/16, s.u. Setzt man CTRLOUT auf "ANA", muss das Stellsignal U ausgegeben werden. Daher folgt auch hier eine Deaktivierung der Auswahlmöglichkeit.


5.4 Reglerparametrierung

5.4.1 RAQ (Rampenfunktion Volumenstromsollwert)

Kommando	Parameter	Einheit	Gruppe
RAQ:I X	i= 1 4 x= 1 600000	ms	Q_CTRL FUNCTION nicht SLAVE

Vier Quadranten Rampenfunktion.

Der erste Quadrant steht für die ansteigende Rampe in Förderrichtung 1, der zweite Quadrant für die abfallende Rampe (Förderrichtung 1). Der dritte Quadrant steht für die ansteigende Rampe (Förderrichtung 2) und der vierte Quadrant für die abfallende Rampe (Förderrichtung 2).

Falls man mit SIGNAL:WQ ein unipolares Eingangssignal konfiguriert hat, verschwindet die Einstellmöglichkeit für RAQ:3 / RAQ:4.

5.4.2 CORR:Q (Volumenstromkorrekturwert)

Kommando	Parameter	Einheit	Mode
CORR:Q x	x= 0 1000	0,01 %	Q_CTRL

Über dieses Kommando wird der Korrekturwert des Volumenstromverlustes parametriert. Infolge eines steigenden Druckes wird der Pumpenvolumenstrom linear geringer. Über diesen Korrekturwert kann dies (im Rahmen der möglichen Fördermenge) kompensiert werden.

Empfehlenswert ist bei diesem Einsatz, die Rampe zu aktivieren, damit es zu keinen ungewollten Schwingungen kommt.

5.4.3 CQ (PID-Reglerparametrierung Schwenkwinkel)

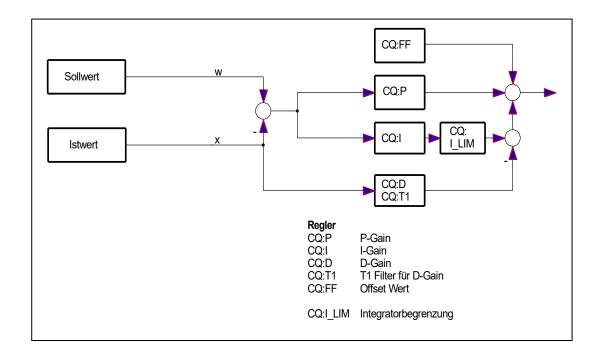
Kommando	ommando Parameter		Mode
CQ:I X	i= FF P I I_LIM D T1		Q_CTRL
	:FF x= 0 10000	0,01 %	
	:P x= 0 10000	0,01	
	:I x= 0 30000	0,1 ms	
	:I_LIM	0,01 %	
	:D x= 0 1200	0,1 ms	
	:T1 x= 10 1000	0,1 ms	

Über diese Kommandos wird der Q-Regler parametriert. Es handelt sich um einen klassischen PID Regler.

Erklärung:

CQ:FF - Offset Wert um den Nullpunkt des Ventils (1 Magnet) einzustellen. Typischer Wert = 5000.

CQ:P - P Verstärkung des Reglers.

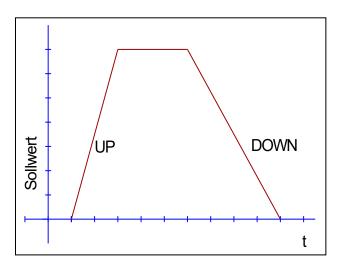

CQ:I - Nachstellzeit (Integrator), der Wert 0 deaktiviert den Integrator.

CQ:I_LIM - Begrenzung des Integrators, dieser Wert sollte möglichst klein gewählt werden, da er nur die

Nichtlinearitäten des Systems ausgleichen muss.

CQ:D - Vorhaltezeit

CQ:T1 - Dämpfung des D-Anteils, typische Werte liegen bei ca. 10... 30 % von CQ:D.



5.4.4 RAP (Rampenfunktion Drucksollwert)

Kommando	Parameter	Einheit	MODE
RAP:I X	i= UP DOWN		P_CTRL
	x= 1 600000	ms	

Dieser Parameter wird in ms eingegeben.

Die Rampenzeit wird getrennt für die steigende (UP) und fallende Rampe (DOWN) eingestellt.

5.4.5 **CP (PID-Reglerparametrierung Druckregler)**

Kommando		Paramete	r	Einheit	Mode
CP:LLIM	Χ	x= 01	0000	0,01 %	P_CTRL
CP1:I	X	i= P I I	_ACT D T1		
CP2:I	Χ	:P	x= 0 10000	0,01	
		:I	x= 0 30000	0,1 ms	
		:I_ACT	x= 0 10000	0,01 %	
		:D	x= 0 1200	0,1 ms	
		:T1	x= 10 1000	0,1 ms	

Über diese Kommandos wird der Druckregler parametriert. Es gibt zwei Datensätze, zwischen denen mittels Schalteingang an PIN 5 umgeschaltet werden kann.

Erläuterung:

CP:LLIM

- Untere Grenze für den Druckregler. Hier kann der Aussteuerbereich von 0 bis auf -100% erweitert werden.

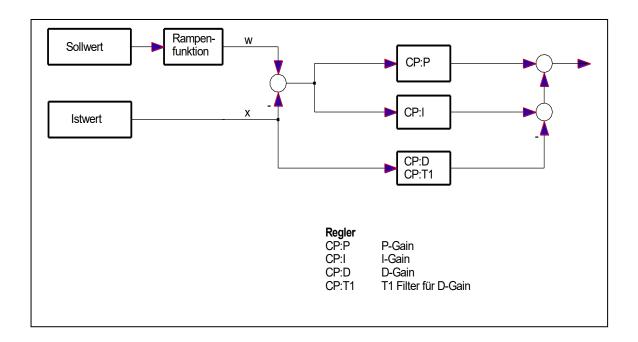
ACHTUNG: Wird CP:LLIM negativ, so wird automatisch der Mooring Betrieb in beiden Richtungen ermöglicht.

CP:P P Verstärkung des Reglers. Infolge der Druckregelung über ein Druckventil sind relativ kleine

Verstärkungen einzustellen. Typische Werte: 50... 200.

CP:I Nachstellzeit (Integrator), der Wert 0 deaktiviert den Integrator.

CP:I_ACT Aktivierungsschwelle, diese steuert die Funktion des Integrators. Der Integrator wird erst ak-


tiviert, wenn der Istwert die prozentuale Schwelle (I_ACT) des Sollwertes erreicht hat. Dies

verhindert ein ungewolltes Integrieren und somit Drucküberschwinger.

CP:D Vorhaltezeit.

CP:T1 Dämpfung des D-Anteils, typische Werte liegen bei ca. 10... 30 % von CP:D.

Die Integratorbegrenzung bei positiver Ansteuerung ist der Schwenkwinkelsollwert. Bei negativer Ansteuerung ist dies die Reglerbegrenzung LLIM.

5.4.6 PL (Leistungsbegrenzungsregelung)

Kommando		Parameter	Einheit	Gruppe
PL:RPM	X	x = 300 3000	1/min	P_CTRL
PL:QMAX	X	x = 1 1000	Cm³	
PL:EFF	X	x = 5000 10000	0,01 %	
PL:PL	X	x = 1 10000	0,1 kW	
PL:T1	X	x = 10 10000	0,1 ms	

Über dieses Kommando wird die Leistungsbegrenzung parametriert. Die Funktion wird mittels Parameter PL:CTRL in der SYSTEM Gruppe aktiviert.

Erläuterung:

PL:RPM - Motordrehzahl

PL:QMAX - Schluckvolumen der Pumpe

PL:EFF - Wirkungsgrad
PL:PL - Leistungsgrenze
PL:T1 - Zeitfaktor

Abhängig von den Eingabedaten wird die theoretische Eckleistung berechnet:

$$P_{\text{MAX}} = \frac{QMAX \cdot RPM \cdot P_{\text{SYS_RANGE}}}{Eff \cdot 600}$$

Bei Änderungen an Parametern der Gleichung wird der Wert für P:MAX automatisch errechnet.

Die parametrierbare Leistungsgrenze PL wird automatisch durch diese Eckleistung begrenzt. Der kleinste einstellbare Wert liegt bei 20 % von P:MAX.

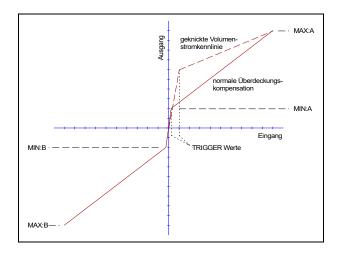
Der Zeitfaktor bestimmt die Dynamik der Leistungsbegrenzung. Typische Werte liegen zwischen 20... 50 ms.

5.5 Ausgangssignalanpassung

An dieser Stelle erfolgt eine erste Signalanpassung, die verwendet wird, um die Überdeckung des Stellventils zu kompensieren. Wenn man die internen Schieberlageregler verwendet, wird dort mit den Parametern VA:MIN die Mindestansteuerung der Magneten für den Beginn der Schieberbewegung eingestellt und an dieser Stelle das erforderliche Signal an die Schieberlageregelung, um die mechanische Überdeckung des Ventilschiebers zu überwinden. Entsprechend sind bei der Inbetriebnahme zuerst die "VA" – Parameter einzustellen und danach die an dieser Stelle folgenden Werte.

5.5.1 MIN (Kompensation der Überdeckung)

5.5.2 MAX (Ausgangsskalierung)


5.5.3 TRIGGER (Ansprechschwelle der Überdeckungskompensation)

Kommando		Parameter	Einheit	Gruppe
		i= A B	-	Q_CTRL
MIN:i	Х	x= 0 6000	0,01 %	
MAX:i	Х	x= 5000 10000	0,01 %	
TRIGGER	Х	x= 0 3000	0,01 %	

Über diese Kommandos wird das Ausgangssignal an das Ventil angepasst. Bei Positioniersteuerungen und anderen geregelten Anwendungen wird eine geknickte Volumenstromkennlinie anstelle des typischen Überdeckungssprungs verwendet. Der Vorteil ist ein besseres und stabileres (Positionier-) Verhalten.

ACHTUNG: Sollten am Ventil bzw. am Ventilverstärker ebenfalls Einstellmöglichkeiten für die Totzonenkompensation vorhanden sein, so ist sicherzustellen, dass die Einstellung entweder am Leistungsverstärker oder im Modul durchgeführt wird. Wird der MIN Wert zu hoch eingestellt, wirkt sich dies auf die minimale Ventilöffnung aus, diedann nicht mehr einstellbar ist. Im extremen Fall führt dies zu einem Oszillieren um den gewünschten Zielwert.

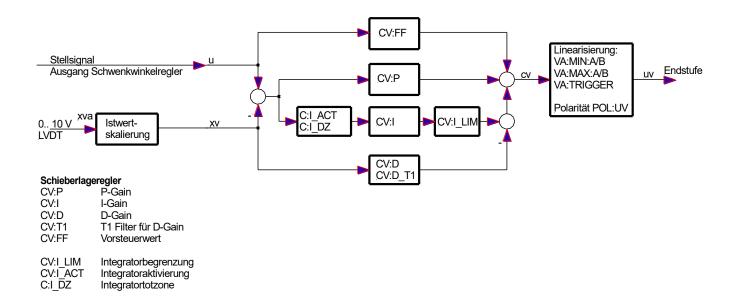
5.5.4 POL:U (Polarität der Schwenkwinkelregelung)

Kommando		Parameter	Einheit	Gruppe
POL:U	Х	X= + -	-	Q_CTRL

Mit diesem Parameter wählt man die Polarität des Schwenkwinkelreglers. Nähere Information dazu in der Anwendungsbeschreibung / Kapitel 3.

5.6 Schieberlageregler

Der Schieberlageregler ist aktiv, wenn der Parameter CTRLOUT auf "2SCL" eingestellt wurde.


5.6.1 PID Regler

Kommando	Parameter	Einheit	Gruppe
CV:i x	i= P I D D_T1 FF		V_CTRL
	P x= 1 10000	0,01	
	I x= 0 30000	0,1 ms	
	D x= 0 1200	0,1 ms	
	D_T1 x= 10 1000	0,1 ms	
	FF x= 0 10000	0,01 %	

Über dieses Kommando wird der Regler parametriert.

Die P, I und D Anteile verhalten sich genauso wie bei den bereits beschriebenen Reglern für Druck und Schwenkwinkel.

Über den FF - Wert wird der Ausgang direkt angesteuert. Der Regler muss so nur noch die Abweichung ausregeln. Dies führt zu einem stabilen Regelverhalten und gleichzeitig zu einer dynamischen Ansteuerung.

5.6.2 Integratorsteuerung

Kommando		Parameter	Einheit	Gruppe
CV:I_LIM	X	x= 0 10000	0,01 %	V_CTRL
CV:I_ACT	Х	x= 0 10000	0,01 %	
CV:I_DZ	Х	x= 0 1000	0,01 %	

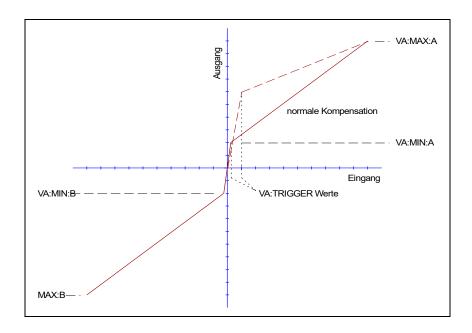
Der CV:I_LIM Parameter begrenzt den Arbeitsbereich des I-Anteils, so dass der Regler schneller ohne größere Überschwinger den Prozess regeln kann. Ist der Wert zu klein gewählt, kann es zu dem Effekt kommen, dass die Nichtlinearität des Ventils nicht mehr zu 100 % ausgeglichen werden kann.

CV:I_ACT steuert die Funktion des Integrators. Der Integrator wird erst aktiviert, wenn die Regelabweichung unter die eingestellte Schwelle gesunken ist oder die momentane Regelabweichung zu einem Abbau des Integralanteils führt. Der Vorteil dieser Steuerung macht sich bei Sollwertsprüngen bemerkbar: Zunächst reicht der Einfluss der Vorsteuerung und des P-Anteils, um den größten Teil der Sollwertänderung zu bewirken. Vor Erreichen des Ziels wird der Integrator hinzugeschaltet und sorgt für das Eliminieren einer bleibenden Abweichung. Ohne den zwischenzeitlichen Stopp des Integrators würde dieser zu früh das Ausgangssignal in die gleiche Richtung bewegen, so dass der Zielwert erst nach einem deutlichen Überschwinger erreicht wird. Ein Abbau des Integralanteils hingegen ist immer erwünscht.

CV:I_DZ definiert eine Totzone für den I – Anteil des Reglers. Innerhalb dieses Bereichs der Regelabweichung wird die Integration gestoppt. Damit wird vermieden, dass sich der Ventilschieber im stationären Betrieb permanent über den Bereich der mechanischen Hysterese hin- und her bewegt, d.h. sogenanntes Grenzzyklen ausführt.

5.6.3 VA:MIN (Mindestansteuerung)

5.6.4 VA:MAX (Maximalansteuerung)


5.6.5 VA:TRIGGER (Ansprechschwelle der Mindestansteuerung)

Kommando		Parameter	Einheit	Gruppe
		i= A B		V_CTRL
VA:MIN:i	X	x= 0 6000	0,01 %	
VA:MAX:i	Х	x= 4000 10000	0,01 %	
VA:TRIGGER	Х	x= 0 3000	0,01 %	

Bei 2-magnetigen Ventilen gibt es für jede Seite eine Mindestansteuerung, die notwendig ist um eine Bewegung des Schiebers einzuleiten. Diese Werte werden meistens durch die Vorspannung der Rückstellfedern am Ventilschieber bestimmt.

Ähnlich zu den Parametern MIN:A / MIN:B (für die Überdeckungskompensation) bewirken die Parameter VA:MIN:A / VA:MIN:B eine Kompensation, hier jedoch für die zentrierende Kraft in der Neutralstellung.

Die Werte VA:MAX:A/:B können ggf. verwendet werden, um eine Asymmetrie der Magnetströme für die beiden Bewegungsrichtungen zu realisieren.

5.6.6 POL:UV (Polarität des Stellventils)

Kommando		Parameter	Einheit	Gruppe
POL:UV	Х	X= + -	-	V_CTRL

Mit diesem Parameter wählt man die Polarität der Stellventilansteuerung. Nähere Information dazu in der Anwendungsbeschreibung / Kapitel 3.

5.7 Endstufenparameter

5.7.1 **CURRENT (Nominaler Ausgangsstrom)**

Kommando		Parameter	Einheit	Gruppe
CURRENT	X	x= 500 2600	mA	IO_CONFIG

Über diesen Parameter wird der Nennstrom des Magneten eingestellt. Dither und auch MIN/MAX beziehen sich immer auf den gewählten Strombereich.

5.7.2 **DITHER (Dither Signal Einstellung)**

Kommando		Parameter	Einheit	Gruppe
DFREQ	X	x= 60 400	Hz	IO_CONFIG
DAMPL	X	x= 0 3000	0,01 %	

Über dieses Kommando kann der Dither frei definiert werden. Je nach Ventil können unterschiedliche Amplituden oder Frequenzen erforderlich sein. Typische Werte für die Ditheramplitude liegen zwischen 500 und 1200.

ACHTUNG: Die Parameter PPWM und IPWM beeinflussen die Wirkung der Dithereinstellung. Nach der Dither Optimierung sollten diese Parameter nicht mehr verändert werden. Bei PWM Frequenzen unter 500 Hz sollte die Ditheramplitude auf 0 gesetzt werden.

5.7.3 PWM (PWM Frequenz)

Kommando	Parameter	Einheit	Gruppe
PWM x	x= 61 2604	Hz	IO_CONFIG

Die Frequenz kann in vorgegebenen Stufen definiert werden (61 Hz, 72 Hz, 85 Hz, 100 Hz, 120 Hz, 150 Hz, 200 Hz, 269 Hz, 372 Hz, 488 Hz, 624 Hz, 781 Hz, 976 Hz, 1201 Hz, 1420 Hz, 1562 Hz, 1736 Hz, 1953 Hz, 2232 Hz, 2604 Hz). Die optimale Frequenz ist ventilabhängig.

ACHTUNG: Bei niedrigen PWM Frequenzen sollten die Parameter PPWM und IPWM angepasst werden, da die längeren Totzeiten die Stabilität des Regelkreises verringern. Dies geschieht normalerweise automatisch bei ACC = ON.

5.7.4 ACC (Automatische Einstellung des Magnetstromreglers)

Kommando		Parameter	Einheit	Gruppe
ACC	X	x= ON OFF	-	IO_CONFIG

Arbeitsmodus der Magnetstromregelung.

ON: Automatische Berechnung der PPWM und IPWM Werte anhand der PWM Frequenz.

OFF: Werte müssen manuelle vom Anwender angepasst werden.

5.7.5 **PPWM (Magnetstromreglereinstellung)**

5.7.6 **IPWM (Magnetstromreglereinstellung)**

Kommando	Parameter	Einheit	Gruppe
PPWM	x= 0 30	-	IO_CONFIG
IPWM	x= 1 100	-	

Mit diesen Kommandos wird der PI Stromregler für die Magnetansteuerung parametriert.

Ein höherer P-Anteil erhöht die Dynamik des Stromregelkreises und somit auch die Auswirkung der Dithereinstellung. Der I-Anteil sollte nur bei genauen Kenntnissen über die Stromregelung verändert werden.

ACHTUNG: Ohne entsprechende Messmöglichkeiten und Erfahrungen sollten diese Parameter nicht verändert werden. Parameter sind nur änderbar bei ACC = OFF.

Ist die PWM > 2500 Hz, so kann die Stromregeldynamik erhöht werden.

Typische Werte sind: PPWM = 7... 15 und IPWM = 20... 40.

Ist die PWM < 250 Hz, so muss die Stromregeldynamik verringert werden.

Typische Werte sind: PPWM = 1... 3 und IPWM = 40... 80.

5.8 Sonderkommandos (TERMINAL)

5.8.1 VLVCTRL (Betriebsart Schieberlageregelung)

Kommando		Parameter	Einheit	Gruppe
VLVCTRL	Х	x= ON SIMOL SIMCL	-	TERMINAL

Mit diesem Kommando wird die Schieberlageregelung für das Stellventil aktiviert oder eine Inbetriebnahmefunktion angewählt. Dieser Parameter wird nicht mit SAVE gespeichert, nach jedem Neustart des Moduls ist zunächst die Einstellung "ON" angewählt.

ON: PID – Regler für die Schieberposition ist aktiv, Sollwert aus Schwenkwinkelregler (Normalbetrieb)

SIMOL: Simulation des gesteuerten Betriebs "open loop" (reine Vorsteuerung). Einstellung während der

Inbetriebnahme. Als Sollwert für die Ventilposition wird das Signal WQI vor der Rampe genutzt, Vorgabe im Monitor – Fenster des WPC (RC – Modus).

Achtung: in dieser Einstellung ist die Fehlerverarbeitung inaktiv, das Gerät arbeitet ohne READY.

SIMCL: Simulation des Schieberlagereglers inklusive Vorsteuerung. Einstellung während der Inbetrieb-

nahme. Als Sollwert für die Ventilposition wird das Signal WQI vor der Rampe genutzt, Vorgabe im

Monitor – Fenster des WPC (RC – Modus).

Achtung: in dieser Einstellung ist die Fehlerverarbeitung inaktiv, das Gerät arbeitet ohne READY.

5.8.2 EOUT (Ausgangssignal bei fehlender Bereitschaft)

Kommando	Parameter	Einheit	Gruppe
EOUT x	x= -10000 10000	0,01 %	TERMINAL

Ausgangswert bei fehlender Bereitschaft (READY Ausgang ist deaktiviert). Hier kann ein Wert (Öffnungsgrad des Ventils) für den Fall eines Fehlers oder bei deaktiviertem ENABLE Eingang definiert werden. Diese Funktion kann verwendet werden, wenn z. B. bei einem Sensorfehler der Antrieb (mit vorgegebener Geschwindigkeit) in eine der beiden Endlagen fahren soll.

|EOUT| = 0 Ausgang wird im Fehlerfall abgeschaltet. Dies ist das normale Verhalten.

Wenn man CTRLOUT = 2SCL parametriert hat, also eine interne Lageregelung des Ventilschiebers vorgenommen wird, gibt EOUT den Sollwert für die Ventilposition im Fehlerfall bzw. bei Abwesenheit einer Freigabe durch ENABLE an.

Der Lageregler bleibt also aktiv, wenn EOUT nicht "0" ist und versucht, diese Position einzustellen.

5.8.3 **DIAG (Abfrage der letzten Abschaltursachen)**

Gibt man dieses Kommando im Terminalfenster ein, werden die letzten 10 Abschaltungen (Entfall des *Ready* bei anliegendem *Enable*) angezeigt. Die Abschaltursachen werden jedoch nicht gespeichert, wenn die Versorgungsspannung abgeschaltet wird. Die letzte Ursache wird in der untersten Zeile der Liste angezeigt. Einträge "---" zeigen unbenutzte Speicherzellen an.

Ein Beispiel:

5.9 Prozessdaten

Kommando	Parameter	Einheit
WQI	Schwenkwinkelvorgabe	%
WQ	Schwenkwinkelsollwert	%
XQ	Schwenkwinkelistwert	%
EQ	Regelabweichung Schwenkwinkel	%
CQ	Ausgangssignal Schwenkwinkelregler	%
WP	Drucksollwert	bar
XP1	Druckistwert in Richtung 1	bar
XP2	Druckistwert in Richtung 2	bar
XP	Druckistwert in der aktiven Förderrichtung	bar
EP	Regelabweichung Druck	bar
CP	Ausgangssignal Druckregler	%
XL	Ausgangsleistung	%
XQA	Eingangssignal Schwenkwinkel vor der Skalierung	%
XVA	Eingangssignal Ventilposition vor der Skalierung	%
Ŭ	Stellsignal zum Ventil oder Sollwert Ventilposition	%
IA	Ventilstrom Magnet A	mA
IB	Ventilstrom Magnet B	mA
XV	Position des Stellventils	%
UV	Ausgangssignal an die Endstufe	%
CV	Ausgangssignal des Ventilreglers	%
EV	Regelabweichung Ventilposition	%

Die Prozessdaten können nur ausgelesen werden. Sie zeigen die aktuellen Ist- und Sollwerte an.

6 Anhang

6.1 Überwachte Fehlerquellen

Folgende mögliche Fehlerquellen werden bei SENS = ON / AUTO fortlaufend überwacht:

Quelle	Fehler	Verhalten
Analogeingang PIN 6	Nicht im gültigen Bereich	Der Ausgang wird deaktiviert.
Analogeingang PIN 10 4 20 mA	Nicht im gültigen Bereich	Der Ausgang wird deaktiviert.
Analogeingang PIN 13 4 20 mA	Nicht im gültigen Bereich	Der Ausgang wird deaktiviert.
Analogeingang PIN 14 4 20 mA	Nicht im gültigen Bereich	Der Ausgang wird deaktiviert.
Analogeingang PIN 31 4 20 mA	Nicht im gültigen Bereich, externer Drucksollwert wird benötigt	Der Ausgang wird deaktiviert.
LVDT Signale (falls verwendet)	Signalstörung	Der Ausgang wird deaktiviert.
Magnet an PIN 17 + 19	Kabelbruch	Die Endstufe wird deaktiviert.
Magnet an PIN 18 + 20	Kabelbruch	Die Endstufe wird deaktiviert.
EEPROM (beim Einschalten)	Datenfehler	Der Ausgang wird deaktiviert. Der Ausgang kann nur aktiviert werden, indem die Parameter neu gespeichert werden!

6.2 Fehlersuche

Ausgegangen wird von einem betriebsfähigen Zustand und vorhandener Kommunikation zwischen Modul und dem WPC-300. Weiterhin ist die Parametrierung zur Ventilansteuerung anhand der Ventildatenblätter eingestellt

Zur Fehleranalyse sollte der RC Modus im Monitor verwendet werden

ACHTUNG: Wenn mit dem RC (Remote Control) Modus gearbeitet wird sind alle Sicherheitsaspekte gründlich zu prüfen. In diesem Modus wird das Modul direkt gesteuert und die Maschinensteuerung kann keinen Einfluss auf das Modul ausüben.

FEHLER	URSACHE / LÖSUNG	
ENABLE (Freigabe) ist aktiv, das Modul zeigt keine Reaktion.	Entweder ist die Spannungsversorgung nicht vorhanden oder das ENABLE Signal liegt nicht korrekt an. Andere Fehler werden durch eine blinkende READY LED angezeigt. Über den Monitor in WPC-300 lässt sich überprüfen ob das ENABLE Signal anliegt.	
ENABLE ist aktiv, die READY LED blinkt.	 Mit der blinkenden READY LED wird signalisiert, dass vom Modul ein Fehler erkannt wurde. Fehler können sein: Kabelbruch oder Kurzschluss zu den Magneten Fehlerhafte Ansteuerung bei einem 4 20 mA Analogsignal Fehlerhaftes Signal (außerhalb des Arbeitsbereichs) Schwenkwinkelsensor Interner Datenfehler (Kommando SAVE ausführen) Mit dem WPC-300 Bedienprogramm kann - über dem Monitor - der Fehler direkt lokalisiert werden. 	
ENABLE ist aktiv, die READY LED ist an, Regelung ist nicht stabil.	In vielen Fällen handelt es sich dabei um ein hydraulisches Problem. Elektrische Probleme könnten sein: Spannungsversorgung stark gestört. sehr lange Magnetleitungen (> 40 m) und daraus folgend instabiler Magnetstromregelkreis 1. Instabiler Magnetstromregelkreis infolge der Magnetansteuerung. In manchen Fällen hat sich die Einstellung der PWM Frequenz und des DITHER als etwas problematisch herausgestellt. Folgende Erfahrungen wurden bisher gemacht: PWM Frequenz = 2600 Hz (hohe Frequenz), der DITHER muss in Amplitude und Frequenz genau auf das Ventil abgestimmt werden. PWM Frequenz = 100 400 Hz (niedrige Frequenz), die DITHER Amplitude ist auf jeden Fall auf 0% (ausgeschaltet) einzustellen. Instabiler PID Regelkreis (Schwenkwinkelregelung) Die Regelparameter P, I und D sind zu überprüfen, erste Maßnahmen: P reduzieren (auf ca. die halbe Verstärkung einstellen) I erhöhen (auf eine relativ langsame Nachstellzeit tn einstellen) Regelverhalten beobachten und beurteilen in wie weit es sich verändert hat. Anhand der Veränderungen kann beurteilt werden, wie die weiteren Optimierungsmaßnahmen durchzuführen sind.	

¹ Eventuell, muss der Magnetstromregelkreis (P und I) optimiert werden. Dies ist sehr selten notwendig.

6.3 Inbetriebnahme des Stellventil - Positionsreglers

6.3.1 Vorparametrierung

Hier werden zunächst Einstellungen auf Basis der grundsätzlichen Systemeigenschaften und Datenblattwerte vorgenommen. Die Hydraulik sollte zunächst abgeschaltet sein, damit man gefahrlos beliebige Einstellungen durchführen kann. Beachten Sie bitte auch, dass das Gerät bereits jetzt aktiv werden kann, falls die externen Signale Entsprechendes vorgeben.

Folgende Parameter sind nun einzustellen:

Kommando	Parameter	Beschreibung	Gruppe
CURRENT	500 2600	Tragen Sie hier den Nennstrom des Ventils ein. Sollte dieser unter 500 mA liegen, können Sie die Parameter VA:MAX:A/:B nutzen, um die An- steuerung weiter zu reduzieren.	IO_CONF
DFREQ DAMPL PWM	60 400 0 3000 61 2604	Datenblattangaben des Ventils verwerten. ²	IO_CONF
CV:FF	0 20000	Zunächst auf den Wert "10000" = 100% einstellen. Die endgültige Einstellung folgt im Schritt 3.	IO_CONF

Kontrollen zum Ende des Schrittes (optional):

Aktivieren Sie den RC - Modus im WPC und prüfen Sie, ob die Ansteuerung der Magnete funktioniert.

Geben Sie im Terminalfenster ein VLVCTRL SIMOL (Eingabe) hiermit wird der Sollwert U für die Ventilposition direkt über den Schieber WQI im Monitorfenster des WPC übernommen.

Da das Modul im Modus "SIMOL", also rein gesteuert arbeitet, wird dieser Wert nahezu unverändert als Stellgröße "UV" ausgegeben.

Es ist also jetzt möglich, beide Magnete mit Ihrem Nennstrom anzusteuern.

6.3.2 Schritt 2: Skalierung des Wegsensors

Der Schieberweg wird in der Regel über ein LVDT - Wegmesssystem erfasst, das direkt am Erweiterungsmodul LDT-401 angeschlossen werden kann, oder dessen Signal durch einen externen Wandler im einen Spannungswert umgesetzt wird, der als Analogwert an Klemme 29 erfasst wird.

Der Rohwert des Messignals für die Schieberposition ist unabhängig von der Signalquelle (Analogeingang oder LVDT Direktanschluss) als Prozessvariable XVA abzulesen.

Der dort angezeigte Wert in Neutralposition ohne Ansteuerung wird nun in den Parameter ZERO:XV eingetragen, der Wert bei maximalen Öffnung in aufsteuernder Richtung in den Parameter MAX:XV.

Beachten Sie, dass diese Parameter in der Einheit 0,01% angegeben werden.

Zur Ansteuerung verwenden Sie hier den RC – Modus wie im vorangehenden Kapitel beschrieben (VLVCTRL SIMOL, WQI auf Maximum setzen).

Achtung: Die Informationen im Datenblatt zu diesem Thema sind oft lückenhaft oder missverständlich, da die Terminologie gerne verwechselt wird. Gibt es nur eine Frequenzangabe, ist meist die PWM Einstellung gemeint. Wenn das DITHER Signal gemeint ist, gibt es für gewöhnlich eine Angabe zu Frequenz und Amplitude. Ohne Hinweise empfiehlt sich der Start mit den Werkseinstellungen.

² Es gibt zwei grundlegende Prinzipien:

Der Magnet wird mit einer möglichst hohen PWM Frequenz im kHz Bereich und einem zusätzlichen Dithersignal betrieben. Dies ist die vorwiegende Variante in der Industriehydraulik.

^{2.} Im mobilen Bereich sind überwiegend Ventile im Einsatz, die mit einer niedrigen PWM Frequenz angesteuert werden. In diesem Fall wird kein DITHER Signal verwendet. Es ist nicht notwendig die exakte PWM Frequenz zu verwenden, daher erfolgt die Eingabe bei unseren Geräten stufenweise per Auswahl aus einer Tabelle. Es sollte die nächstgelegene Stufe gewählt werden.

Die Istposition des Schiebers wird dann durch die Prozessvariable "XV" angezeigt. Bei korrekter Skalierung sollte sich näherungsweise folgendes Bild ergeben:

WA = U = 0 -> X = 0 WA = U = 100% -> X = 100% WA = U = -100% -> X = -100%

Zu beachten ist, dass Signale größer als 100% und kleiner -100% abgeschnitten werden, d.h. man stellt besser auf +/- 99 % ein, da man bei 100% nicht sicher sein kann, ob das Signal begrenzt wurde.

Wegen mechanischer Toleranzen kann es vorkommen, dass die Auslenkungen in beiden Richtungen abweichen.

6.3.3 Schritt 3: Mindestansteuerung und Vorsteuerung einstellen

Zum Ausgleich der Totzone durch die Federvorspannung ist die Angabe einer Mindestansteuerung erforderlich. Der Wert wird getrennt für beide Richtungen eingestellt und ist einfach zu ermitteln:

Benutzen Sie den RC – Modus wie oben ("SIMOL"), erhöhen Sie mit dem Schieberegler für WQI langsam die Ansteuerung und beobachten Sie dabei den Istwert XV Es wird der Punkt gesucht, ab dem die Anzeige für XV beginnt mit weiterer Erhöhung von WQI erkennbar zu steigen. Notieren Sie das Stellsignal UV an dieser Stelle. Gleiches ist für die andere Richtung hin zu negativen Werten für WQI und XV zu wiederholen. Der dort gefundene Wert für UV wird ebenfalls notiert. Anschließend sind in der Gruppe V_CTRL die beiden Parameter VA:MIN:A und VA:MIN:B zu setzen: Richtung A für die positive, B für die negative Signalrichtung. Tragen Sie die Beträge der Mindestansteuerungen ein (*100, da die Eingabe in 0,01% erfolgt).

Es ist möglich, den Wert dabei großzügig abzurunden, tragen Sie aber keinesfalls zu große Werte ein, sonst wird die Regelung im Bereich um den Nullpunkt nicht funktionieren.

Vorsteuerung:

Dieser Parameter ist sehr wichtig. Je besser die Vorsteuerung eingestellt ist, desto weniger muss der Regler "arbeiten".

Wählen Sie im Monitor mindestens die beiden Prozessvariablen XV und CV (= Reglerausgang) aus.

Bewegen Sie mit Hilfe des RC – Modus über den Sollwert WA den Schieber langsam in beide Endlagen.

Halten Sie die Werte von CV fest, bei denen die volle Auslenkung des Schiebers in beiden Richtungen erreicht wird.

Hierbei kann man auch die Hysterese berücksichtigen d.h. auch die Werte beim Absenken des Signals festhalten, bei denen die Rückbewegung einsetzt. Ein Mittelwert der Beträge der so ermittelten Signale "CV" ist im Parameter CV:FF in der Gruppe V CTRL einzutragen (wieder x 100 nehmen).

6.3.4 Schritt 4: Lageregler optimieren

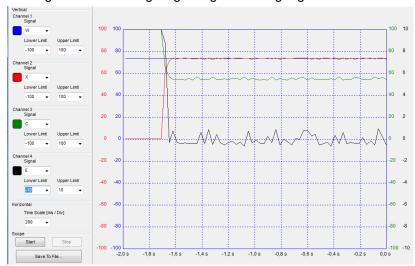
Nun ist es Zeit, den gesteuerten Modus zu verlassen und den Regler zu aktivieren. Hierzu geben Sie im Terminalfenster ein VLVCTRL SIMCL (Eingabe).

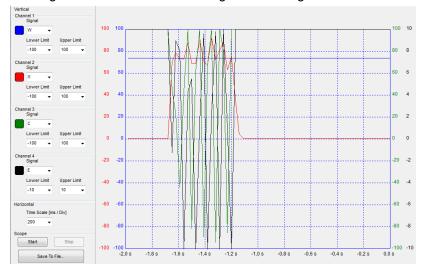
Achtung: Bei falsch eingestelltem Regler kann die Regelung instabil werden, was zu starken Vibrationen führt. Falls etwas Derartiges auftritt, reduzieren sie die Reglerverstärkung CV:P, falls nötig auf den Minimalwert.

Setzen Sie zunächst CV:I_LIM auf "0", damit wird der Integralanteil des Reglers unterdrückt.

Zur Beurteilung des Einschwingverhaltens ist die Oszilloskopansicht im WPC nützlich.

Die interessierenden Signale sind: XV (Schieberposition), U (Sollwert), CV (Reglerausgang), EV (Regelabweichung).




Um das Einschwingen beobachten zu können, ist es nötig während eines Signalwechsels das Ozilloskopfenster aktiv zu haben.

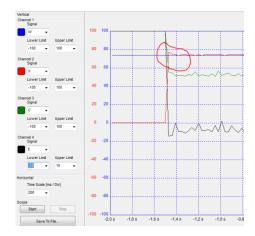
Sollwertsprünge entstehen durch schnelle Änderung des Sollwertsignals über den Schieber WQI.

Die folgende Darstellung zeigt ein gutes Übergangsverhalten:

Im Vergleich dazu eine instabile Reglereinstellung:

Die einfachste Vorgehensweise zur Einstellung der Proportionalverstärkung ist, CV:P schrittweise zu erhöhen, bis Instabilität auftritt. Der Wert von CV:P ist dann wieder durch 2-4 zu teilen, um einen definitiv stabilen aber hohen Wert zu erhalten.

Nach Einstellung der Proportionalverstärkung kann der Integralanteil aktiviert werden. Parametrieren Sie zunächst eine große Nachstellzeit d.h. einen schwachen I – Anteil: CV:I z.B. auf 5000 setzen.


Nun geht es zuerst darum, eine möglichst niedrige Begrenzung durch CV:I_LIM zu finden, die aber ausreicht, um bleibende Regelabweichungen auszuregeln.

Erhöhen Sie also zunächst CV:I_LIM z.B. auf 2000 (= 20%) und führen Sie Versuche mit verschiedener Ansteuerung durch. Beobachten Sie, ob die Regelabweichung "EV" nach Erreichen eines stationären Betriebes nur noch um die Nulllinie schwankt. Ist das in einigen Punkten nicht der Fall, aber CV noch nicht 100% oder -100%, vergrößern Sie CV:I_LIM.

Als nächstes ist die Nachstellzeit CV:l auf einen optimalen Wert einzustellen. Optimal bedeutet: Möglichst klein, aber ohne Schwingneigung und mit wenig Überschwingen. Ein weiterer störender Effekt bei zu kleinen Nachstellzeiten kann sein, dass aufgrund der schnellen Reaktion aber asymmetrischer Signalbegrenzung doch wieder eine bleibende Regelabweichung auftritt.

Hier sieht man ein störendes Überschwingen!

Nun sind die wichtigsten Regelparameter eingestellt.

Folgendes kann je nach Anwendungsfall noch sinnvoll sein:

- D Anteil aktivieren (dies erlaubt manchmal eine höhere P Verstärkung), ist aber oft problematisch
- Totzone für den Integrator anpassen (CV:I_DEACT), falls im stationären Betrieb der Schieber zyklisch durch den I Anteil schwankt (Auftreten sog. Grenzzyklen).
- Aktivierungsschwelle für den Integrator anpassen (Voreinstellung von "10000" verkleinern), um das Überschwingen bei Sollwertänderungen zu verkleinern.

Sind die Schritte zur Ventilreglereinstellung abgeschlossen, geben Sie im Terminal ein $\mathtt{VLVCTRL}$ ON (Eingabe). Auf diese Weise wechseln Sie in den Normalbetrieb und das Ventil wird vom Schwenkwinkelregler angesteuert.

7 Notizen