

Technische Dokumentation

PAM-199-P-ETC

Universeller Leistungsverstärker mit EtherCAT Schnittstelle

Electronics Hydraulicsmeets meetsHydraulics Electronics

Inhaltsverzeichnis

1	Allg	emeine Informationen	4
	1.1	Bestellnummer	4
	1.2	Lieferumfang	4
	1.3	Zubehör	4
	1.4	Verwendete Symbole	5
	1.5	Impressum	5
	1.6	Sicherheitshinweise	6
2	Eige	nschaften	7
	2.1	Gerätebeschreibung	8
3	Anw	endung und Einsatz	9
	3.1	Einbauvorschrift	9
	3.2	Typische Systemstruktur	10
	3.2.	1 Funktion: DIRECTIONAL	10
	3.2.	2 Funktion: INDEPENDENT	10
	3.3	Inbetriebnahme	11
	3.3.	1 Vorgehensweise	11
4	Tec	nnische Beschreibung	12
	4.1	LED Anzeigen	12
	4.2	Eingangs- und Ausgangssignale	12
	4.3	Blockschaltbild	13
	4.4	Typische Verdrahtung	14
	4.5	Technische Daten	15
5	Ethe	PrCAT IO Schnittstelle	16
	5.1	EtherCAT CoE	16
	5.2	EtherCAT Installationshinweise	16
	5.3	EtherCAT Geräteprofile	17
	5.4	Gerätebeschreibung (ESI)	17
	5.5	Objektverzeichnis	18
	5.6	SDO Parametrierung	18
	5.7	Prozessdaten PDO	18
	5.8	PDO Mapping	19
	5.9	EtherCAT Systemverhalten, Zustandsmaschine von Slave Geräten	19
	5.10	Firmware Update via FoE	20
	5.11	Watchdog	21
	5.12	Funktionskanäle	22
6	Para	ameter	23
	6.1	CoE Parameterlisten	23
	6.1.	1 Kommunikationsparameter	23
	6.1.	2 PDOs	26
	6.1.	3 Parameter Kanal 0 (DIRECTIONAL)	28
	6.1.4	4 Kanal 1 / 2 (INDEPENDENT)	31
	6.1.	5 Diagnosemeldungen	35
	6.1.	S System	36
	6.1.	7 Datentypen	37
	6.2	Beschreibungen der SYSTEMPARAMETER	39
	6.2.	IO_BASE (Skalierung der Ein- und Ausgangssignale)	39
	6.2.	2 Datensicherung	39
	6.2.3	3 Loadback	39
	6.2.4	4 Default	39
	6.2.	5 SENS (Fehlerüberwachung)	40

WEST

_			• •	
	6.2.6	5 FUNCTION (Wahl des Funktionsmodus)		
	6.3	Beschreibungen der Funktionsparameter	41	
	6.3.	1 RA (Rampenzeiten)	41	
	6.3.2	2 CCMODE (Aktivierung der Linearisierungsfunktion)	42	
	6.3.3	3 CC (Kurvenpunkte)	42	
	6.3.4	MMTYPE (Typ der Kompensation)	43	
	6.3.	5 TRIGGER (Ansprechschwelle)	43	
	6.3.6	MIN (Kompensation der Überdeckung)	43	
	6.3.7	7 MAX (Ausgangsskalierung)	43	
	6.4	Beschreibungen der ENDSTUFENPARAMETER	44	
	6.4.1	1 CURRENT (Nominaler Ausgangsstrom)	44	
	6.4.2	2 DAMPL (Ditheramplitude)	44	
	6.4.3	3 DFREQ (Ditherfrequenz)	44	
	6.4.4	PWM (PWM Frequenz)	45	
	6.4.	5 ACC (Automatische Einstellung des Magnetstromreglers)	45	
	6.4.6	S PPWM (Magnetstromregler P Anteil)	45	
	6.4.	7 IPWM (Magnetstromregler I Anteil)	45	
	6.5	Prozessdaten (Monitoring)	46	
7 Schnelleinstieg Konfiguration und Parametrierung				
7.1 Konfiguration		47		
	7.2	Parametrierung ohne WPC	49	
7.3 Parametrierung mit WPC		50		
8 Anhang		ang	51	
	8.1	Überwachte Fehlerquellen	51	
8.2 Fehlersuche			51	
9	Notizen			

1 Allgemeine Informationen

1.1 Bestellnummer

PAM-199-P-ETC	- Universeller Leistungsverstärker für Wegeventile oder zwei Druck- oder Drossel-
	ventile mit EtherCAT Schnittstelle

Alternative Produkte

PAM-199-P-PDP	 Universeller Leistungsverstärker f ür Wegeventile oder zwei Druck- oder Drossel- ventile mit Profibus DP Schnittstelle
PAM-199-P-PFN	 Universeller Leistungsverstärker f ür Wegeventile oder zwei Druck- oder Drossel- ventile mit ProfiNet IO Schnittstelle
PAM-199-P	 Universeller Leistungsverstärker f ür Wegeventile oder zwei Druck- oder Drossel- ventile mit analoger Schnittstelle

1.2 Lieferumfang

Zum Lieferumfang gehört das Modul inkl. der zum Gehäuse gehörenden Klemmblöcke. Schnittstellenkabel und weitere ggf. benötigte Teile sind separat zu bestellen. Diese Dokumentation steht als PDF Datei auch im Internet unter <u>www.w-e-st.de</u> zur Verfügung.

1.3 Zubehör

WPC-300 - Bedienprogramm (auf unserer Homepage unter Produkte/Software)

1.4 Verwendete Symbole

Allgemeiner Hinweis

Sicherheitsrelevanter Hinweis

1.5 Impressum

W.E.St. Elektronik GmbH

Gewerbering 31 41372 Niederkrüchten

Tel.: +49 (0)2163 577355-0 Fax.: +49 (0)2163 577355 -11

Homepage:www.w-e-st.deEMAIL:contact@w-e-st.de

Datum: 23.12.2024

Die hier beschriebenen Daten und Eigenschaften dienen nur der Produktbeschreibung. Der Anwender ist angehalten, diese Daten zu beurteilen und auf die Eignung für den Einsatzfall zu prüfen. Eine allgemeine Eignung kann aus diesem Dokument nicht abgeleitet werden. Technische Änderungen durch Weiterentwicklung des in dieser Anleitung beschriebenen Produktes behalten wir uns vor. Die technischen Angaben und Abmessungen sind unverbindlich. Es können daraus keinerlei Ansprüche abgeleitet werden. Dieses Dokument ist urheberrechtlich geschützt.

1.6 Sicherheitshinweise

Bitte lesen Sie diese Dokumentation und Sicherheitshinweise sorgfältig. Dieses Dokument hilft Ihnen, den Einsatzbereich des Produktes zu definieren und die Inbetriebnahme durchzuführen. Zusätzliche Unterlagen und Kenntnisse über die Anwendung sollten berücksichtigt werden bzw. vorhanden sein. Allgemeine Regeln und Gesetze (je nach Land: z. B. Unfallverhütung und Umweltschutz) sind zu berücksichtigen.

Diese Module sind für hydraulische Anwendungen im offenen oder geschlossenen Regelkreis konzipiert. Durch Gerätefehler (in dem Modul oder an den hydraulischen Komponenten), Anwendungsfehler und elektrische Störungen kann es zu unkontrollierten Bewegungen kommen. Arbeiten am Antrieb bzw. an der Elektronik dürfen nur im ausgeschalteten und drucklosen Zustand durchgeführt werden.

Dieses Handbuch beschreibt ausschließlich die Funktionen und die elektrischen Anschlüsse dieser elektronischen Baugruppe. Zur Inbetriebnahme sind alle technischen Dokumente, die das System betreffen, zu berücksichtigen.

Anschluss und Inbetriebnahme dürfen nur durch ausgebildete Fachkräfte erfolgen. Die Betriebsanleitung ist sorgfältig durchzulesen. Die Einbauvorschrift und die Hinweise zur Inbetriebnahme sind zu beachten. Bei Nichtbeachtung der Anleitung, bei fehlerhafter Montage und/oder unsachgemäßer Handhabung erlöschen die Garantie- und Haftungsansprüche.

ACHTUNG!

Alle elektronischen Module werden in hoher Qualität gefertigt. Es kann jedoch nicht ausgeschlossen werden, dass es durch den Ausfall von Bauteilen zu Fehlfunktionen kommen kann. Das Gleiche gilt, trotz umfangreicher Tests, auch für die Software. Werden diese Geräte in sicherheitsrelevanten Anwendungen eingesetzt, so ist durch geeignete Maßnahmen außerhalb des Gerätes für die notwendige Sicherheit zu sorgen. Das Gleiche gilt für Störungen, die die Sicherheit beeinträchtigen. Für eventuell entstehende Schäden kann nicht gehaftet werden.

Weitere Hinweise

- Der Betrieb des Moduls ist nur bei Einhaltung der nationalen EMV Vorschriften erlaubt. Die Einhaltung der Vorschriften liegt in der Verantwortung des Anwenders.
- Das Gerät ist nur für den Einsatz im gewerblichen Bereich vorgesehen.
- Bei Nichtgebrauch ist das Modul vor Witterungseinflüssen, Verschmutzungen und mechanischen Beschädigungen zu schützen.
- Das Modul darf nicht in explosionsgefährdeter Umgebung eingesetzt werden.
- Die Lüftungsschlitze dürfen für eine ausreichende Kühlung nicht verdeckt werden.
- Die Entsorgung hat nach den nationalen gesetzlichen Bestimmungen zu erfolgen.

2 Eigenschaften

Dieses Modul wird für die Ansteuerung von einem Wegeventil mit zwei Magneten oder für bis zu zwei Druckoder Drosselventilen mit jeweils einem Magneten eingesetzt. Verschiedene einstellbare Parameter ermöglichen eine optimale Anpassung an das jeweilige Ventil. Dieser Leistungsverstärker ist eine robuste, kostengünstige und platzsparende Lösung.

Die Ansteuerung, Diagnose und Parametrierung erfolgt über die EtherCAT Schnittstelle. Parallel kann die Parametrierung und die Inbetriebnahme auch über die USB-Schnittstelle durchgeführt werden.

Der Ausgangsstrom ist geregelt und unabhängig von der Stromversorgung und dem Magnetwiderstand. Die Leistungsendstufe wird auf Kabelbruch und Kurzschluss überwacht und schaltet im Fehlerfall das Ventil ab.

Typische Anwendungen: Steuerung von Wege- und Drosselventilen, die eine flexible Anpassung benötigen. Alle typischen Proportionalventile der verschiedenen Hersteller können angesteuert werden (BOSCH REXROTH, BUCHER, DUPLOMATIC, PARKER...).

Merkmale

- Steuerung von Wegeventilen und Druck- oder Drosselventilen
- Kompaktes Gehäuse
- Digital reproduzierbare Einstellungen
- Ansteuerung über den EtherCAT Bus
- Einfache und anwendungsorientierte Parametrierung
- Kennlinienlinearisierung über 10 XY-Punkte pro Richtung
- Freie Parametrierung von RAMP, MIN / MAX, PWM, Ausgangsstrom und DITHER
- Nennstrom des Magneten bis zu 3,0 A
- Fehler Diagnostik und erweiterte Funktionsüberprüfung

2.1 Gerätebeschreibung

3 Anwendung und Einsatz

3.1 Einbauvorschrift

- Dieses Modul ist für den Einbau in einem geschirmten EMV-Gehäuse (Schaltschrank) vorgesehen. Alle nach außen führenden Leitungen sind abzuschirmen, wobei eine lückenlose Schirmung vorausgesetzt wird. Beim Einsatz unserer Steuer- und Regelmodule wird weiterhin vorausgesetzt, dass keine starken elektromagnetischen Störquellen in der Nähe des Moduls installiert werden.
- Typischer Einbauplatz: 24 V Steuersignalbereich (nähe SPS) Durch die Anordnung der Geräte im Schaltschrank ist eine Trennung zwischen dem Leistungsteil und dem Signalteil sicherzustellen. Die Erfahrung zeigt, dass der Einbauraum nahe der SPS (24 V-Bereich) am besten geeignet ist. Alle digitalen und analogen Ein-und Ausgänge sind im Gerät mit Filter und Überspannungsschutz versehen.
- Das Modul ist entsprechend den Unterlagen und unter EMV-Gesichtspunkten zu montieren und zu verdrahten. Werden andere Verbraucher am selben Netzteil betrieben, so ist eine sternförmige Masseführung zu empfehlen. Folgende Punkte sind bei der Verdrahtung zu beachten:
 - Die Signalleitungen sind getrennt von leistungsführenden Leitungen zu verlegen.
 - Analoge Signalleitungen müssen abgeschirmt werden.
 - Alle anderen Leitungen sind im Fall starker Störquellen (Frequenzumrichter, Leistungsschütze) und Kabellängen > 3 m abzuschirmen. Bei hochfrequenter Einstrahlung können auch preiswerte Klappferrite verwendet werden.
 - Die Abschirmung ist mit PE (PE Klemme) möglichst nahe dem Modul zu verbinden. Die lokalen Anforderungen an die Abschirmung sind in jedem Fall zu berücksichtigen. Die Abschirmung ist an beiden Seiten mit PE zu verbinden. Bei Potentialunterschieden ist ein Potentialausgleich vorzusehen.
 - Bei größeren Leitungslängen (>10 m) sind die jeweiligen Querschnitte und Abschirmungsmaßnahmen durch Fachpersonal zu bewerten (z. B. auf mögliche Störungen und Störquellen sowie bezüglich des Spannungsabfalls). Bei Leitungslängen über 40 m ist besondere Vorsicht geboten und ggf. Rücksprache mit dem Hersteller zu halten (Infoblatt zur Verkabelung von Leistungsverstärkern).
- Eine niederohmige Verbindung zwischen PE und der Tragschiene ist vorzusehen. Transiente Störspannungen werden von dem Modul direkt zur Tragschiene und somit zur lokalen Erdung geleitet.
- Die Spannungsversorgung sollte als geregeltes Netzteil (typisch: PELV System nach IEC364-4-4, sichere Kleinspannung) ausgeführt werden. Der niedrige Innenwiderstand geregelter Netzteile ermöglicht eine bessere Störspannungsableitung, wodurch sich die Signalqualität, insbesondere von hochauflösenden Sensoren, verbessert. Geschaltete Induktivitäten (Relais und Ventilspulen) an der gleichen Spannungsversorgung sind <u>immer</u> mit einem entsprechenden Überspannungsschutz direkt an der Spule zu beschalten.

3.2 Typische Systemstruktur

Das Modul kann in zwei unterschiedliche Betriebszustände (zur Ansteuerung von Wegeventilen = KANAL 0 oder zur Ansteuerung von Druck-/ Drosselventilen = KANAL 1 und 2) konfiguriert werden.

3.2.1 Funktion: DIRECTIONAL

Dieses System besteht aus folgenden Komponenten:

- (*1) Proportionalwegeventil
- (*2) Hydraulikzylinder
- (*3) PAM-199-P-ETC
- (*4) Schnittstelle zur SPS mit EtherCAT und Schaltsignalen

3.2.2 Funktion: INDEPENDENT

Dieses System besteht aus folgenden Komponenten:

- (*1) Proportionalventil
- (*2) PAM-199-P-ETC
- (*3) Schnittstelle zur SPS mit EtherCAT und Schaltsignalen

3.3 Inbetriebnahme

3.3.1 Vorgehensweise

Schritt	Tätigkeit
Vorbereitung der Kommunikation	Die ESI Datei stellt die Informationen über die verfügbaren Datenobjekte zur Verfü- gung und muss im richtigen Verzeichnis abgelegt werden. Die Vorgehensweise ent- nehmen Sie bitte der Beschreibung des jeweiligen Masters. Bei TwinCat findet sich dieses unter der Version/Config/IO und dann EtherCAT.
	Zur Inbetriebnahme steht alternativ auch eine serielle Schnittstelle via USB zur Ver- fügung, auf die mit unserem WPC-Programm zugegriffen werden kann. Dieses er- möglicht den Systemtest auch für den Fall, dass die SPS mit dem Feldbus zu die- sem Zeitpunkt noch nicht zur Verfügung steht.
Einschalten	Sorgen Sie dafür, dass es am Antrieb zu keinen ungewollten Bewegungen kommen kann (z. B. Abschalten der Hydraulik).
	Es wird nun von einer korrekt verdrahteten und somit funktionsfähigen Baugruppe ausgegangen. Das Gerät initialisiert sich und die Kommunikation mit dem Feldbus wird aufgebaut. Dies dauert ca. 10 15 Sekunden.
	Überprüfen Sie die Leerlauf-Stromaufnahme des Gerätes. Ist sie höher als angege- ben, so liegen Verdrahtungsfehler vor. Schalten Sie das Gerät unmittelbar ab und überprüfen Sie die Verdrahtung.
Vorparametrierung	Parametrieren Sie jetzt (anhand der Systemauslegung und der Schaltpläne) folgende Parameter:
	Die Grundfunktion FUNCTION , um die Konfiguration der Ein- und Ausgänge des Gerätes vorzunehmen. Es stehen vordefinierte PDOs für die gewählte Funktion zur Verfügung, die entsprechend ausgewählt werden sollten.
	IO_BASE zur Definition der verwendeten Signalskalierung für Soll- und Istwerte. Den Ausgangsstrom CURRENT und die ventiltypischen Parameter wie PWM Fre- quenz oder DITHER und MIN/MAX.
	Eine Kurzanleitung zu diesem Thema ist im Kapitel 7 (Schnelleinstieg Konfigura- tion und Parametrierung) zu finden.
	Die Vorparametrierung ist notwendig, um das Risiko einer unkontrollierten Bewe- gung zu minimieren.
Stellsignal	Kontrollieren Sie das Stellsignal mit einem Strommessgerät. (Der Magnetstrom liegt im Bereich von 0 3,0 A). Im jetzigen Zustand sollte es ca. 0 A anzeigen. HINWEIS! Sie können sich den aktuellen Magnetstrom auch über den Bus oder im WPC Programm anzeigen lassen.
Hydraulik einschalten	Jetzt kann die Hydraulik eingeschaltet werden. Das Modul generiert noch kein Sig- nal. Antriebe sollten stehen oder leicht driften (mit langsamer Geschwindigkeit die Position verlassen), falls es sich um ein Wegeventil handelt.
ENABLE aktivieren	ACHTUNG! Antriebe könnten jetzt ihre Position verlassen und mit voller Geschwin- digkeit in eine Endlage fahren oder der Druck kann Maximalwerte annehmen. Er- greifen Sie Sicherheitsmaßnahmen, um Personen- und Sachschäden zu verhindern.
	Das ENABLE Bit/Signal gibt die Anwendung frei. Bei Fehlerfreiheit wird diese über das READY Bit/Signal zurück gemeldet.
Sollwert vorgeben	Der Verstärker kann nun über die Sollwertvorgabe angesteuert werden.
Parametrierung optimieren	Anhand des Systemverhaltens können nun die Einstellungen optimiert und eventuell ergänzt werden durch Rampen- und Linearisierungsfunktion.
	ACHTUNG! Einstellungen werden nicht automatisch gesichert. Damit die Änderun- gen auch nach einem Neustart zur Verfügung stehen, müssen diese über das WPC oder den EtherCAT gespeichert werden.

4 Technische Beschreibung

4.1 LED Anzeigen

LEDs	Bezeichnung	Beschreil	oung der Funktion
GRÜN	READY	Anzeige der E AUS: AN: Blinkend:	Betriebsbereitschaft des Verstärkers: Stromversorgung oder ENABLE ist nicht aktiviert. System ist betriebsbereit. Fehlerzustand.
GELB GELB	A B	Aktivität des H Aktivität des H Die Intensität	Kanals A: Kanals B: ist abhängig von der Höhe des Magnetstroms.
ROT	FB- ERROR	Fehleranzeige AUS: Blinkend: Einzelblitz: Doppelblitz: Flackernd: AN:	e der Feldbuskommunikation: Kein Fehler. Ungültige Konfiguration. Ungewünschte Zustandsänderung. Unterbrechung der Anwendungsüberwachung. Fehler beim Hochfahren. Unterbrechung der PDI Überwachung.
GRÜN	FB- RUN	Status der Fe AUS: Blinkend: Einzelblitz: Blitzend: AN:	ldbus-Zustandsmaschine: Initialisierung (INIT). Vorstadium der Betriebsbereitschaft (PRE-OP). Sicherer (Betriebs-) Zustand (SAFE-OP). Update (BOOTSTRAP). Betriebsbereit.
GRÜN GRÜN	LINK-ACT- IN LINK-ACT- OUT	Aktivität des M Aktivität des M AUS: AN: Blinkend:	Netzwerk Eingangs: Netzwerk Ausgangs: Keine Verbindung. Es besteht eine Verbindung. Kommunikation ist aktiv.

4.2 Eingangs- und Ausgangssignale

Anschluss	Versorgung		
PIN 7	Spannungsversorgung (siehe technische Daten)		
PIN 8	0 V (GND) Versorgungsanschluss.		
Anschluss	PWM Ausgänge		
PIN 3 / 4	PWM Ausgang zur Ansteuerung des Magneten A / 1, Klemme 4 kann optional als gemeinsamer Rückleiter im Wegeventilmodus genutzt werden (s. Blockschaltbild)		
PIN 2 / 1	PWM Ausgang zur Ansteuerung des Magneten B / 2		

4.3 Blockschaltbild

4.4 Typische Verdrahtung

4.5 Technische Daten

Versorgungsspannung (U _b)	[VDC]	12 30 (inkl. Rippel)
Leerlaufstromaufnahme	[mA]	60
Leistungsbedarf max.	[W]	60 (je nach Magnettyp, zwei Magnete sind aktiv)
Externe Absicherung	[A]	4 mittelträge
Digitale Eingänge	[V]	OFF: < 2
	[V]	ON: > 10
Eingangswiderstand	[kΩ]	25
Digitale Ausgänge	[V]	OFF: < 2
	[V]	ON: max. U₀
Maximale Belastung	[mA]	50
PWM Leistungsausgänge	[mA]	0 3000; Kabelbruch überwacht und
		kurzschlussfest
PWM Frequenz	[Hz]	60 10000; in Stufen einstellbar
Interne Signalverarbeitung	[ms]	1
Magnetstromregelung	[ms]	0,053
EtherCAT	[Mbit/s]	100; nach IEE 802.3
Serielle Schnittstelle		USB
		Virtual COM port driver
		9600… 115200 Baud
		1 Stoppbit, No parity, No handshake
Gehäuse		Snap-On Modul nach EN 50022
		Polyamid PA 6.6
		Brennbarkeitsklasse V0 (UL94)
Gewicht	[kg]	0,310
Schutzklasse		IP20
Temperaturbereich	[°C]	-20 65
Lagertemperatur	[°C]	-20 70
Luftfeuchtigkeit	[%]	< 95 (nicht kondensierend)
Vibrationen	-	IEC 60068-2-6 (Kategorie C)
Anschlüsse		USB Typ Mini
		2 x RJ45
		2 x 4pol. Anschlussblöcke
		PE: über die DIN Tragschiene
EMV		EN 61000-6-2: 8/2005
		EN 61000-6-4: 6/2007 ; A1:2011

5 EtherCAT IO Schnittstelle

5.1 EtherCAT CoE

EtherCAT ist ein Ethernet-basiertes Feldbussystem, das von Beckhoff und der EtherCAT Technology Group (ETG) entwickelt wurde. EtherCAT ist eine offene Technologie, die in den internationalen Normen IEC 61158 und IEC 61784 sowie in ISO 15745-4 standardisiert ist. EtherCAT kann dieselben Kommunikationsmechanismen bereitstellen, die CANopen kennt: Objektverzeichnis, PDO (Prozessdatenobjekte) und SDO (Servicedatenobjekte). Das Netzwerkmanagement ist vergleichbar. EtherCAT folgt hier dem sogenannten CoE-Standard: Can-application-protocol-over-EtherCAT.

Die Prozessdatenobjekte (PDO) dienen zum schnellen und effizienten Austausch von Echtzeitdaten (z. B. E / A-Daten, Soll- oder Istwerte).

5.2 EtherCAT Installationshinweise

EtherCAT unterstützt nahezu jede Topologie, Linie, Baum oder Stern. Die aus den Feldbussen bekannte Busoder Linienstruktur steht damit auch für Ethernet zur Verfügung. Besonders nützlich für die Systemverkabelung ist die Kombination von Leitungen und Verbindungen oder Stichleitungen. Die erforderlichen Schnittstellen existieren an den Kopplern; Es sind keine zusätzlichen Ethernet-Switchs erforderlich. Natürlich kann auch die klassische Switch-basierte Ethernet-Sterntopologie verwendet werden.

Die zulässige Leitungslänge zwischen zwei EtherCAT-Geräten darf 100 Meter nicht überschreiten. Dies resultiert aus der Fast-Ethernet-Technologie, die vor allem aus Gründen der Signaldämpfung über die Leitungslänge eine maximale Verbindungslänge von 5 + 90 + 5 m bei Leitungen mit entsprechenden Eigenschaften erlaubt.

Verwenden Sie für den Anschluss von EtherCAT-Geräten nur Ethernet-Verbindungen (Kabel + Stecker) mindestens der Kategorie 5 (CAT5) gemäß EN 50173 oder ISO / IEC 11801. Für die Signalübertragung verwendet EtherCAT vier Kabeladern.

EtherCAT verwendet unter anderem RJ45-Stecker. Die Kontaktbelegung ist zum Ethernet-Standard (ISO / IEC 8802-3) kompatibel.

5.3 EtherCAT Geräteprofile

Für die Belegung des anwendungsbezogenen Indexbereiches des EtherCAT gibt es spezielle Geräteprofile. Einige finden Ihren Platz erst durch weitere Subprofile. So besitzen das EtherCAT Automation Protocol (1000), das EtherCAT Device Protocol (1100) und der AoE-Router (9000) eigene Subprofilnummern. Unter diesen Nummern haben die Ports der Geräte die das jeweilige Protokoll unterstützen eigene Objektverzeichnisse. Das hier beschriebene Gerät verwendet das *Modular Device Profile*, kurz MDP, beschrieben in der Spezifikation 5001. Es definiert den Bereich ab Index 0x6000.

Bereich CoE im EtherCAT-Slave:

Das CoE-Verzeichnis muss im Gerät in der Firmware (FW) im lokalen Controller verwaltet werden. Dies ist das sogenannte Online-Verzeichnis, da es dem Anwender nur zur Verfügung steht, wenn der EtherCAT-Slave mit Betriebsspannung versorgt ist, es kann ggf. über die EtherCAT-Kommunikation manipuliert werden. Damit die Parameter ohne Vorhandensein eines Slaves im Voraus eingesehen und geändert werden können, wird üblicherweise eine Standardkopie des gesamten Verzeichnisses in der Gerätebeschreibungsdatei ESI (XML) gespeichert. Dies wird als Offline-Verzeichnis bezeichnet. Änderungen in diesem Verzeichnis haben keinen Einfluss auf den späteren Betrieb des Slaves mit dem Master.

Die ESI-Beschreibung definiert auch das Prozessabbild, die Kommunikationsart zwischen Master und Slave / Gerät und ggf. die Gerätefunktionen. Das physische Gerät (ggf. Firmware) muss die Kommunikationsabfragen / Einstellungen des Masters unterstützen. Dies ist rückwärtskompatibel, d. h. neuere Geräte (höhere Revision) sollten unterstützt werden, wenn der EtherCAT-Master sie als ältere Revision adressiert.

Die Bereiche im Slave-CoE, die für den anwendungsorientierten EtherCAT-Feldbusbenutzer wichtig sind:

- 0x1000: Hier werden feste Identitätsinformationen für das Gerät gespeichert, einschließlich Name, Hersteller, Seriennummer usw. sowie Informationen zu den aktuellen und verfügbaren Prozessdatenkonfigurationen.
- 0x6000: Eingangs-PDOs ("Eingang" aus der Perspektive des EtherCAT-Masters)
- 0x7000: Ausgangs-PDOs ("Ausgabe" aus der Perspektive des EtherCAT-Masters)
- 0x8000: Hier werden die Betriebs- und Funktionsparameter für alle Kanäle gespeichert, z. B. Filtereinstellungen oder Ausgangsfrequenzen. Folgende Bereiche sind ebenfalls von Interesse:
- 0xA000: Diagnosedaten
- 0xF000: Bereich des modular aufgebauten Moduls (ETG.5001.1)

5.4 Gerätebeschreibung (ESI)

Die ESI-Datei (CoE-Verzeichnis) wird vom Hersteller eines EtherCAT-Gerätes zur Verfügung gestellt. Sie ist in der Beschreibungssprache XML angelegt und verfügt über ein standardisiertes Format für die Beschreibung von Geräten. Die ESI-Datei enthält Informationen zu:

- Beschreibung der Datei (Name, Version, Erstellungsdatum usw.)
- Allgemeine Geräteinformationen (Herstellername und Code)
- Gerätename und -typ
- Versionen-Beschreibung der unterstützten Objekte nach ihren Attributen

Diese Datei beschreibt die Funktionen und zur Verfügung stehenden Daten des Gerätes über den EtherCAT Feldbus. Sie wird vom Master benötigt, um diese Informationen dem Anwender zur Verfügung zu stellen. Dazu muss die Datei in das entsprechende Verzeichnis des Engineering Systems für den Master abgelegt werden.

5.5 Objektverzeichnis

Ein Gerät mit CoE Schnittstelle, wie das hier beschriebene, besitzt ein Objektverzeichnis. Dieses beinhaltet alle Daten, die über den EtherCAT Feldbus übermittelt werden können, unabhängig der Übertragungsrichtung. Das Objektverzeichnis ist in der Gerätebeschreibungsdatei enthalten.

5.6 SDO Parametrierung

SDO ist die Abkürzung für *Service Daten Objekt*. Als solche werden gemeinhin alle Einträge im Objektverzeichnis angesehen, die sich ab der Adresse 0x1000 befinden. Diese können inklusive ihrer Beschreibung mittels des SDO Informationsdienstes über den Mailboxkanal ausgelesen werden, sobald dieser Initialisiert wurde. Die Beschreibung enthält den Datentyp, dessen Länge, die Zugriffsrechte und ob das Objekt als PDO verwendet werden soll.

Die Parametrierung kann via CoE vorgenommen werden. Die Anwendungsparameter befinden sich ab Adresse 0x8000 bzw. 0x8010 und 0x8020 abhängig vom Kanal.

5.7 Prozessdaten PDO

Die Ein- und Ausgangsdaten des EtherCAT-Slaves werden als Process Data Objects (PDO) angezeigt. Die von und zu einem EtherCAT-Gerät zyklisch übertragenen Prozessdaten (PDOs) sind die Nutzdaten. Der EtherCAT-Master (z.B. PLC, Beckhoff TwinCAT) parametriert dazu in der Anlaufphase jeden EtherCAT-Slave. Es spezifiziert die Prozessdaten (Größe in Bits / Bytes, Datenquelle, Übertragungsart) vom oder zum Slave-Gerät.

Bei sogenannten "intelligenten" EtherCAT-Geräten stehen die Prozessdateninformationen auch im CoE-Verzeichnis zur Verfügung. Änderungen in diesem CoE-Verzeichnis, die zu abweichenden PDO-Einstellungen führen, verhindern jedoch, dass der Slave erfolgreich gebootet wird. Es wird nicht empfohlen, andere als die vorgesehenen Prozessdaten zu konfigurieren, da die Geräte-Firmware (sofern verfügbar) auf diese PDO-Kombinationen abgestimmt ist.

Objektliste:

- Index Objektindex des PDOs
- Subindex Subindex des PDOs
- Name Name des PDOs
- Flag RW Lese- oder Schreibstatus des PDOs
- Flag RO Nur-Lese-Status, es ist nicht möglich, Daten auf das Objekt zu schreiben
- Flag P ein zusätzliches P charakterisiert das Objekt als ein Prozessdatenobjekt
- Value Wert des Objekts

5.8 PDO Mapping

Der Begriff *Mapping* kann im Deutschen passend mit *Zuordnung* übersetzt werden. Dabei werden Anwendungsobjekte aus dem Objektverzeichnis ausgewählt, die als Prozessdatenobjekte fungieren. Dieses Mapping kann vom Anwender verändert werden. In diesem Gerät wird eine Vorbelegung zur Verfügung gestellt, die funktionsabhängig das Mapping anpasst.

5.9 EtherCAT Systemverhalten, Zustandsmaschine von Slave Geräten

Übersicht der Zustände

Zustand	Beschreibung
INIT	Initialisierungszustand nach dem Einschalten. Mailboxkommunikation wird vorbereitet.
BOOT	Nur Mailboxkommunikation via <i>File-Access over EtherCAT</i> ist aktiv. In diesem Zustand kann ein Firmware Update vorgenommen werden.
PRE-OP	Mailbox Kommunikation wurde geprüft und ist aktiv. Prozessdatenkommunikation und Mapping werden vorbereitet.
SAFE-OP	Mailbox und Prozessdatenkommunikation wurden geprüft und sind aktiv. Der <i>EtherCAT-Slave Controller</i> wird nun zyklisch aktualisiert. Die Aus- gänge des Gerätes befinden sich aber noch im sicheren Zustand (Watch- dog).
OP	Betriebszustand. Ausgangsdaten können nun übertragen werden. Das Gerät gibt die vom Master empfangenen Daten nun auf die Ausgänge.

Mögliche Übergänge zwischen den Zuständen

Zustand	Übergang	Zielzustand	Aktion
INIT	IB	BOOT	Start Mailboxkommunikation für FoE Protokoll.
	IP	PRE-OP	Prüfen der Mailbox und Starten der SDO-Kommunikation.
BOOT	BI	INIT	Stopp Mailboxkommunikation.
PRE-OP	PI	INIT	Stopp der SDO-Kommunikation.
	PS	SAFE-OP	Start der PDO-Kommunikation.
SAFE-OP	SI	INIT	Stopp der SDO- und PDO-Kommunikation.
	SP	PRE-OP	Stopp der PDO-Kommunikation.
	SO	OP	Start Auswertung der Vorgaben des Masters.
OP	OI	INIT	Stopp der SDO- und PDO-Kommunikation.
	OP	PRE-OP	Stopp der PDO-Kommunikation.
	OS	SAFE-OP	Stopp Auswertung der Vorgaben des Masters.

5.10 Firmware Update via FoE

Wird die EtherCAT Zustandsmaschine in den Bootstrap (BOOT) Zustand versetzt, so besteht die Möglichkeit mittels des "*File Access over EtherCAT*" Protokolls ein Firmware Update durchzuführen. Dies ist nur möglich mit einem entsprechenden *.efw File, das W.E.St. zur Verfügung stellt, wenn dies notwendig sein sollte. Hierzu muss der Slave (PAM-199-P-ETC) in den Bootstrap State versetzt werden und dann der Download gestartet werden. Dies geschieht beispielsweise in TwinCAT 3.1 durch folgende Bedienung:

In dieser Maske zunächst auf "Bootstrap" schalten (oberer Bereich). Dann den Knopf "Download …" betätigen.

Nach der Auswahl des Binärfiles (Dateiendung .efw) erscheint folgender Dialog:

Edit FoE Name			x
String:	PAM-199-P-ETC_crc	OK	
Hex:	50 41 4D 2D 31 39 39 2D 50 2D 45 54 43 5F €	Cancel	
Length:	17		
Password (hex):	00000000		

Das Passwort ist 0000000. Nach der Bestätigung mit OK beginnt der Ladevorgang, was am Fortschrittsbalken in der unteren rechten Ecke von TwinCAT zu beobachten ist. Wenn der Transfer abgeschlossen ist, leuchtet die rote LED an der Baugruppe kurz auf. Wenn nun in den *Init* State gewechselt wird, startet der Bootloader und kopiert die geladene Software in das interne Flash. Während des Kopierens leuchtet bzw. blinkt die Ready-LED an der PAM in schneller Folge. Nach Abschluss des Kopiervorgangs sollte die Baugruppe kurz von der Versorgungsspannung getrennt werden. Nach erneutem Anlauf ist die geladene Firmware aktiv.

5.11 Watchdog

Funktionsbeschreibung

Der Watchdog ist eine Überwachungsfunktion für die Prozessdatenkommunikation. Wird diese unterbrochen, bringt die Funktion die Ausgänge innerhalb einer bestimmten Zeit in einen sicheren Zustand. Normalerweise ist dieser Zustand AUS, kann aber je nach Einstellung bei bestimmten Geräten variieren.

Es stehen zwei separate Watchdog Funktionen zur Verfügung.

SM (Sync Manager) - Überwacht die Prozessdaten Kommunikation des Gerätes über EtherCAT.

PDI (Process Data Interface) - Überwacht die Prozessdatenkommunikation zu lokalen CPUs des Gerätes.

Die Ansprechzeit wird für beide Funktionen separat vorgegeben. Ein Multiplikator, gültig für beide Funktionen, erlaubt einen sehr weiten Einstellbereich. Durch Eingabe von "0" kann die Funktion deaktiviert werden. Bei Unterbrechung der Kommunikation werden die Ausgänge dann nicht in den sicheren Zustand versetzt.

Einstellung

Zu finden ist die Einstellung unter dem Reiter EtherCAT des entsprechenden Gerätes (Box) bei erweiterten Einstellungen/Verhalten. Die Einstellung ist somit gerätespezifisch und bei jedem Gerät einzeln vorzunehmen. Beim Start des Gerätes wird die Parametrierung übernommen, wenn das Häkchen in der zugehörigen Checkbox gesetzt ist. Andernfalls wird die Einstellung im EtherCAT Slave Controller nicht aktualisiert.

Funktion	Default	Bereich	Beschreibung	
MULTIPLIER	2498	1 65535	 Einstellung der Watchdog Basiszeit von 40 ns bis ca. 2,6 ms. Berechnung: 1 / 25 MHz * (Multiplier + 2). 	
PDI WATCHDOG	1000	0 65535	Reaktionszeit PDI Überwachung 40 ns bis ca. 172 s. Berechnung: t * Multiplier. ("0" deaktiviert die Überwachung.)	
SM WATCHDOG	1000	0 65535	Reaktionszeit SM Überwachung 40 ns bis ca. 172 s. Berechnung: t * Multiplier. ("0" deaktiviert die Überwachung.)	

5.12 Funktionskanäle

Bei diesem Gerät kann die Grundfunktionalität umgeschaltet werden, was zur Folge hat, dass sich die Prozessdaten abhängig der gewählten Funktion ändern. Dies definiert den Verstärker als modulares Gerät. Der Kanal 0 oder die Kanäle 1/2 dürfe nicht gleichzeitig aktiviert werden.

Kanal 0

Dies ist der Kanal für den *DIRECTIONAL* Modus. Hier finden sich alle Parameter und Prozessdaten für das gesamte Gerät, wenn ein Wegeventil mit zwei Magneten angesteuert werden soll.

Kanal 1/2

Diese Kanäle stehen im *INDEPENDENT* Modus zur Verfügung. Dies bedeutet, dass beide Magnetausgänge unabhängig voneinander angesteuert werden können. Die hier enthaltenen Parameter und Prozessdaten haben nur Gültigkeit im *INDEPENDENT* Modus.

6 Parameter

6.1 CoE Parameterlisten

6.1.1 Kommunikationsparameter

Index	Gruppe	Name	Datentyp	Flags	Default	Einheit	Bedeutung
Kommunika	ation						
1000:00		DEVICE TYPE	UINT32	RO		-	
1001:00		ERROR REGISTER	UINT8	RO		-	
1008:00		DEVICE NAME		RO	PAM-199-P-ETC	-	
1009:00		HARDWARE VERSION		RO	10	-	
100A:00		SOFTWARE VERSION		RO	10		
1018:00	IDENTITY		UINT8	RO	0x04	-	Anzahl der Indexeinträge.
1018:01		VENDOR ID	UINT32	RO	0x000005AE	-	
1018:02		PRODDUCT CODE	UINT32	RO	0x00C703F3	-	
1018:03		REVISION	UINT32	RO	0x0000007	-	Wird ggf. erhöht
1018:04		SERIAL NUMBER	UINT32	RO		-	Eintrag wird nicht genutzt
Rx PDO Ma	pping				-		
1600:00	DIR		UINT8	RO	0x03 (3 _{dez})	-	Anzahl der Indexeinträge.
1600:01		ENABLE		RO	0x70000101	-	Gerätefreigabe
1600:02							
1600:03		COMMAND VALUE		RO	0x70000320	-	Sollwertvorgabe
1601:00	IND		UINT8	RO	0x06 (6 _{dez})	-	Anzahl der Indexeinträge.
1601:01		ENABLE 1		RO	0x70100101	-	Freigabe Kanal 1
1601:02							
1601:03		COMMAND VALUE 1		RO	0x70100310	-	Sollwertvorgabe Kanal 1

Index	Gruppe	Name	Datentyp	Flags	Default	Einheit	Bedeutung
1601:04		ENABLE 2		RO	0x70200101	-	Freigabe Kanal 2
1601:05							
1601:06		COMMAND VALUE 2		RO	0x70200310	-	Sollwertvorgabe Kanal 2
Tx PDO Ma	pping						
1A00:00	DIR_IN		UINT8	RO	0x0D (13 _{dez})	-	Anzahl der Indexeinträge.
1A00:01		READY	UINT32	RO	0x60000101	-	Betriebsbereitschaft des Gerätes
1A00:02							
1A00:03		MEMORY	UINT32	RO	0xA0000101	-	Kein Speicherfehler
1A00:04		UNDER-VOLTAGE	UINT32	RO	0xA0000201	-	Versorgungsspannung nicht zu gering
1A00:05		OVER VOLTAGE	UINT32	RO	0xA0000301	-	Versorgungsspannung nicht zu hoch
1A00:06		OVER TEMPERATURE	UINT32	RO	0xA0000401	-	Prozessortemperatur nicht zu hoch
1A00:07							
1A00:08		SHORT SOLENOID A	UINT32	RO	0xA0100101	-	Kein Kurzschluss an Magnet A
1A00:09		OPEN SOLENOID A	UINT32	RO	0xA0100201	-	Kein Kabelbruch zu Magnet A
1A00:0A							
1A00:0B		SHORT SOLENOID B	UINT32	RO	0xA0200101	-	Kein Kurzschluss an Magnet B
1A00:0C		OPEN SOLENOID B	UINT32	RO	0xA0200201	-	Kein Kabelbruch zu Magnet B
1A00:0D							
1A01:00	IND_IN		UINT8	RO	0x0F (15 _{dez})	-	Anzahl der Indexeinträge.
1A01:01		READY 1	UINT32	RO	0x60100101	-	Betriebsbereitschaft Kanal 1
1A01:02							
1A01:03		READY 2	UINT32	RO	0x60200101	-	Betriebsbereitschaft Kanal 2
1A01:04							
1A01:05		MEMORY	UINT32	RO	0xA0000101	-	Kein Speicherfehler
1A01:06		UNDER-VOLTAGE	UINT32	RO	0xA0000201	-	Versorgungsspannung nicht zu niedrig
1A01:07		OVER VOLTAGE	UINT32	RO	0xA0000301	-	Versorgungsspannung nicht zu hoch
1A01:08		OVER TEMPERATURE	UINT32	RO	0xA0000401	-	Prozessortemperatur nicht zu hoch
1A01:09							

Index	Gruppe	Name	Datentyp	Flags	Default	Einheit	Bedeutung
1A01:0A		SHORT SOLENOID A	UINT32	RO	0xA0100101	-	Kein Kurzschluss an Magnet 1
1A01:0B		OPEN SOLENOID A	UINT32	RO	0xA0100201	-	Kein Kabelbruch zu Magnet 1
1A01:0C							
1A01:0D		SHORT SOLENOID B	UINT32	RO	0xA0200101	-	Kein Kurzschluss an Magnet 2
1A01:0E		OPEN SOLENOID B	UINT32	RO	0xA0200201	-	Kein Kabelbruch zu Magnet 2
1A01:0F							
1A02:00	DIR_SIG		UINT8	RO	0x05 (5 _{dez})	-	Anzahl der Indexeinträge.
1A02:01		W	UINT32	RO	0x60000310	-	Aktueller Sollwert
1A02:02		с	UINT32	RO	0x60000410	-	Stellsignal nach CC
1A02:03		υ	UINT32	RO	0x60000510	-	Stellgröße
1A02:04		IA	UINT32	RO	0x60000610	-	Magnetstrom Magnet A
1A02:05		IB	UINT32	RO	0x60000710	-	Magnetstrom Magnet B
1A03:00	IND_SIG		UINT8	RO	0x08 (8 _{dez})	-	Anzahl der Indexeinträge.
1A03:01		W1	UINT32	RO	0x60100310	-	Aktueller Sollwert Kanal 1
1A03:02		C1	UINT32	RO	0x60100410	-	Stellsignal nach CC Kanal 1
1A03:03		U1	UINT32	RO	0x60100510	-	Stellgröße Kanal 1
1A03:04		11	UINT32	RO	0x60100610	-	Magnetstrom Kanal 1
1A03:05		W2	UINT32	RO	0x60200310	-	Aktueller Sollwert Kanal 2
1A03:06		C2	UINT32	RO	0x60200410	-	Stellsignal nach CC Kanal 2
1A03:07		U2	UINT32	RO	0x60200510	-	Stellgröße Kanal 2
1A03:08		12	UINT32	RO	0x60200610	-	Magnetstrom Kanal 2

6.1.2 PDOs

Index	Gruppe	Name	Datentyp	Flags	Default	Einheit	Bedeutung
INPUT DAT	A (RxPDO)						
6000:00	DIR		UINT8	RO	0x07 (7 _{dez})	-	Anzahl der Indexeinträge.
6000:01		READY	BOOL	RO	-	-	Betriebsbereitschaft des Gerätes
6000 : 02							
6000:03		W	INT	RO	-	-	Aktueller Sollwert
6000:04		с	INT	RO	-	-	Stellsignal
6000:05		υ	INT	RO	-	-	Stellgröße
6000:06		IA	UINT	RO	-	mA	Magnetstrom Magnet A
6000:07		IB	UINT	RO	-	mA	Magnetstrom Magnet B
6010:00	IND1		UINT8	RO	0x06 (6 _{dez})	-	Anzahl der Indexeinträge.
6010:01		READY1	BOOL	RO	-	-	Betriebsbereitschaft Kanal 1
6010:02							
6010:03		W1	UINT	RO	-	-	Aktueller Sollwert Kanal 1
6010:04		C1	UINT	RO	-	-	Stellsignal Kanal 1
6010:05		U1	UINT	RO	-	-	Stellgröße Kanal 1
6010:06		11	UINT	RO	-	mA	Magnetstrom Kanal 1
6020:00	IND2		UINT8	RO	0x06 (6 _{dez})	-	Anzahl der Indexeinträge.
6020:01		READY2	BOOL	RO	-	-	Betriebsbereitschaft Kanal 2
6020:02							
6020:03		W2	UINT	RO	-	-	Aktueller Sollwert Kanal 2
6020:04		C2	UINT	RO	-	-	Stellsignal Kanal 2
6020:05		U2	UINT	RO	-	_	Stellgröße Kanal 2

Index	Gruppe	Name	Datentyp	Flags	Default	Einheit	Bedeutung
6020:06		12	UINT	RO	-	mA	Magnetstrom Kanal 2
OUTPUT DA	ATA (TxPDO)						
7000:00	DIR		UINT8	RO	0x03 (3 _{dez})	-	Anzahl der Indexeinträge.
7000:01		ENABLE	BOOL	RW	-	-	Freigabe des Gerätes
7000:02							
7000:03		COMMAND VALUE	DINT	RW	-	-	Sollwertvorgabe
7010:00	IND1		UINT8	RO	0x03 (3 _{dez})	-	Anzahl der Indexeinträge.
7010:01		ENABLE1	BOOL	RW	-	-	Freigabe Kanal 1
7010:02							
7010:03		COMMAND VALUE 1	UINT	RW	-	-	Sollwertvorgabe Kanal 1
7020:00	IND2		UINT8	RO	0x03 (3 _{dez})	-	Anzahl der Indexeinträge.
7020:01		ENABLE2	BOOL	RW	-	_	Freigabe Kanal 2
7020:02							
7020:03		COMMAND VALUE 2	UINT	RW	-	-	Sollwertvorgabe Kanal 2

6.1.3 Parameter Kanal 0 (DIRECTIONAL)

Index	Gruppe	Name	Datentyp	Flags	Default	Einheit	Bedeutung	WPC Gruppe
Rampenfur	nktion							
8002:00	RAMP		UINT8	RO	0x05 (5 _{dez})	-	Anzahl der Indexeinträge.	CTRL
8002:01								
8002:02		RA:UP:A	UDINT	RW	100	ms	Rampenzeit ansteigender Magnetstrom A	
8002:03		RA:DOWN:A	UDINT	RW	100	ms	Rampenzeit abfallender Magnetstrom A	
8002:04		RA:UP:B	UDINT	RW	100	ms	Rampenzeit ansteigender Magnetstrom B	
8002:05		RA:DOWN:B	UDINT	RW	100	ms	Rampenzeit abfallender Magnetstrom B	
Kennlinien	linearisierung							
8006:00	сс		UNIT8	RO	0x2A (42 _{dez})	-	Anzahl der Indexeinträge.	CTRL + EXP
8006:01		CCB:10_X	INT	RW	-10000	0,01%	X Koordinate Punkt -10	
8006:02		CCB:10_Y	INT	RW	-10000	0,01 %	Y Koordinate Punkt -10	
8006:03		ССВ:9_Х	INT	RW	-9000	0,01 %	X Koordinate Punkt -9	
8006:04		ССВ:9_Ү	INT	RW	-9000	0,01 %	Y Koordinate Punkt -9	
8006:05		CCB:8_X	INT	RW	-8000	0,01 %	X Koordinate Punkt -8	
8006:06		CCB:8_Y	INT	RW	-8000	0,01 %	Y Koordinate Punkt -8	
8006:07		ССВ:7_Х	INT	RW	-7000	0,01 %	X Koordinate Punkt -7	
8006:08		ССВ:7_Ү	INT	RW	-7000	0,01 %	Y Koordinate Punkt -7	
8006:09		ССВ:6_Х	INT	RW	-6000	0,01 %	X Koordinate Punkt -6	
8006:0A		ССВ:6_У	INT	RW	-6000	0,01 %	Y Koordinate Punkt -6	
8006:0B		CCB:5_X	INT	RW	-5000	0,01 %	X Koordinate Punkt -5	
8006:0C		CCB:5_Y	INT	RW	-5000	0,01 %	Y Koordinate Punkt -5	
8006:0D		CCB:4_X	INT	RW	-4000	0,01 %	X Koordinate Punkt -4	
8006:0E		CCB:4_Y	INT	RW	-4000	0,01 %	Y Koordinate Punkt -4	
8006:0F		CCB:3_X	INT	RW	-3000	0,01 %	X Koordinate Punkt -3	

Index	Gruppe	Name	Datentyp	Flags	Default	Einheit	Bedeutung	WPC Gruppe
8006:10		CCB:3_Y	INT	RW	-3000	0,01 %	Y Koordinate Punkt -3	
8006:11		CCB:2_X	INT	RW	-2000	0,01 %	X Koordinate Punkt -2	
8006:12		CCB:2_Y	INT	RW	-2000	0,01 %	Y Koordinate Punkt -2	
8006:13		CCB:1_X	INT	RW	-1000	0,01 %	X Koordinate Punkt -1	
8006:14		CCB:1_Y	INT	RW	-1000	0,01 %	Y Koordinate Punkt -1	
8006:15		CCA:0_X	INT	RW	0	0,01 %	X Koordinate Punkt 0	
8006:16		CCA:0_Y	INT	RW	0	0,01 %	Y Koordinate Punkt 0	
8006:17		CCA:1_X	INT	RW	1000	0,01 %	X Koordinate Punkt 1	
8006:18		CCA:1_Y	INT	RW	1000	0,01 %	Y Koordinate Punkt 1	
8006:19		CCA:2_X	INT	RW	2000	0,01 %	X Koordinate Punkt 2	
8006:1A		CCA:2_Y	INT	RW	2000	0,01 %	Y Koordinate Punkt 2	
8006:1B		CCA: 3_X	INT	RW	3000	0,01 %	X Koordinate Punkt 3	
8006:1C		CCA: 3_Y	INT	RW	3000	0,01 %	Y Koordinate Punkt 3	
8006:1D		CCA:4_X	INT	RW	4000	0,01 %	X Koordinate Punkt 4	
8006:1E		CCA:4_Y	INT	RW	4000	0,01 %	Y Koordinate Punkt 4	
8006:1F		CCA:5_X	INT	RW	5000	0,01 %	X Koordinate Punkt 5	
8006:20		CCA:5_Y	INT	RW	5000	0,01 %	Y Koordinate Punkt 5	
8006:21		CCA:6_X	INT	RW	6000	0,01 %	X Koordinate Punkt 6	
8006:22		CCA:6_Y	INT	RW	6000	0,01 %	Y Koordinate Punkt 6	
8006:23		CCA:7_X	INT	RW	7000	0,01 %	X Koordinate Punkt 7	
8006:24		CCA:7_Y	INT	RW	7000	0,01 %	Y Koordinate Punkt 7	
8006:25		CCA:8_X	INT	RW	8000	0,01 %	X Koordinate Punkt 8	
8006:26		CCA:8_Y	INT	RW	8000	0,01 %	Y Koordinate Punkt 8	
8006:27		CCA:9_X	INT	RW	9000	0,01 %	X Koordinate Punkt 9	
8006:28		CCA:9_Y	INT	RW	9000	0,01 %	Y Koordinate Punkt 9	
8006:29		CCA:10_X	INT	RW	10000	0,01 %	X Koordinate Punkt 10	
8006:2A		CCA:10_Y	INT	RW	10000	0,01 %	X Koordinate Punkt 10	

Index	Gruppe	Name	Datentyp	Flags	Default	Einheit	Bedeutung	WPC Gruppe
Ventilanpa	ssung							
800A:00	MINMAX		UINT8	RO	0x09 (9 _{dez})	-	Anzahl der Indexeinträge.	CTRL + EXP
800A:01		CCMODE	DT0802EN03	RW	OFF	-	Aktivierung der Linearisierungsfunktion	
800A:02								
800A:03		MMTYPE	DT0805EN03	RW	JMP	-	Kompensationstyp: Sprung oder Linear	
800A:04								
800A:05		TRIGGER	UINT	RW	200	0,01 %	Ansprechschwelle der Überdeckungskompensation	
800A:06		MIN:A	UINT	RW	0	0,01 %	Überdeckungskompensation Magnet A	
800A:07		MAX:A	UINT	RW	10000	0,01 %	Ausgangsskalierung Magnet A	
800A:08		MIN:B	UINT	RW	0	0,01 %	Überdeckungskompensation Magnet B	
800A:09		MAX:B	UINT	RW	10000	0,01 %	Ausgangsskalierung Magnet B	
Leistungse	endstufe	•	-		·			
800D:00	POWER STAGE		UINT8	RO	0x0A (10 _{dez})	-	Anzahl der Indexeinträge.	IO_CONFIG
800D:01								
800D:02		CURRENT	UINT	RW	1000	mA	Magnet-Nennstrom	
800D:03		DAMPL	UINT	RW	500	0,01 %	Dither Amplitude	
800D:04		DFREQ	UINT	RW	120	Hz	Dither Frequenz	
800D:05		PWM	DT0803EN05	RW	2604	Hz	PWM Frequenz	
800D:06								
800D:07		ACC	DT0802EN03	RW	ON	-	Automatische Magnetstromregler Einstellung	IO_CONFIG + EXP
800D:08								
800D:09		PPWM	UINT	RW	7	-	P Verstärkung Magnetstromregler	
800D:0A		IPWM	UINT	RW	40	-	I Verstärkung Magnetstromregler	

6.1.4 Kanal 1 / 2 (INDEPENDENT)

Index	Gruppe	Name	Datentyp	Flag s	Default	Einheit	Bedeutung	WPC Gruppe
Rampenfur	nktion				·		•	
8012:00	RAMPEN KANAL 1		UINT8	RO	0x03 (3 _{dez})	-	Anzahl der Indexeinträge.	CTRL
8012:01								
8012:02		RA:UP:1	UDINT	RW	100	ms	Rampenzeit ansteigender Magnetstrom	
8012:03		RA:DOWN:1	UDINT	RW	100	ms	Rampenzeit abfallender Magnetstrom	
8022:00	RAMPEN KANAL 2		UINT8	RO	0x03 (3 _{dez})	-	Anzahl der Indexeinträge.	
8022:01								
8022:02		RA:UP:2	UDINT	RW	100	ms	Rampenzeit ansteigender Magnetstrom	
8022:03		RA:DOWN:2	UDINT	RW	100	ms	Rampenzeit abfallender Magnetstrom	
Kennlinien	linearisierung				·		•	
8016:00	CC KANAL 1		UNIT8	RO	0x16 (22 _{dez})	-	Anzahl der Indexeinträge Kanal 1	CTRL + EXP
8016:01		CC1:0_X	INT	RW	0	0,01 %	X Koordinate Punkt 0	
8016:02		CC1:0_Y	INT	RW	0	0,01 %	Y Koordinate Punkt 0	
8016:03		CC1:1_X	INT	RW	1000	0,01 %	X Koordinate Punkt 1	
8016:04		CC1:1_Y	INT	RW	1000	0,01 %	Y Koordinate Punkt 1	
8016:05		CC1:2_X	INT	RW	2000	0,01 %	X Koordinate Punkt 2	
8016:06		CC1:2_Y	INT	RW	2000	0,01 %	Y Koordinate Punkt 2	
8016:07		CC1:3_X	INT	RW	3000	0,01 %	X Koordinate Punkt 3	
8016:08		CC1:3_Y	INT	RW	3000	0,01 %	Y Koordinate Punkt 3	
8016:09		CC1:4_X	INT	RW	4000	0,01 %	X Koordinate Punkt 4	
8016:0A		CC1:4_Y	INT	RW	4000	0,01 %	Y Koordinate Punkt 4	
8016:0B		CC1:5_X	INT	RW	5000	0,01 %	X Koordinate Punkt 5	

Index	Gruppe	Name	Datentyp	Flag s	Default	Einheit	Bedeutung	WPC Gruppe
8016:0C		CC1:5_Y	INT	RW	5000	0,01 %	Y Koordinate Punkt 5	
8016:0D		CC1:6_X	INT	RW	6000	0,01 %	X Koordinate Punkt 6	
8016:0E		CC1:6_Y	INT	RW	6000	0,01 %	Y Koordinate Punkt 6	
8016:0F		CC1:7_X	INT	RW	7000	0,01 %	X Koordinate Punkt 7	
8016:10		CC1:7_Y	INT	RW	7000	0,01 %	Y Koordinate Punkt 7	
8016:11		CC1:8_X	INT	RW	8000	0,01 %	X Koordinate Punkt 8	
8016:12		CC1:8_Y	INT	RW	8000	0,01 %	Y Koordinate Punkt 8	
8016:13		CC1:9_X	INT	RW	9000	0,01 %	X Koordinate Punkt 9	
8016:14		CC1:9_Y	INT	RW	9000	0,01 %	Y Koordinate Punkt 9	
8016:15		CC1:10_X	INT	RW	10000	0,01 %	X Koordinate Punkt 10	
8016:16		CC1:10_Y	INT	RW	10000	0,01 %	Y Koordinate Punkt 10	
8026:00	CC KANAL 2		UNIT8	RO	0x16 (22 _{dez})	-	Anzahl der Indexeinträge Kanal 2.	
8026:01		CC2:0_X	INT	RW	0	0,01 %	X Koordinate Punkt 0	
8026:02		CC2:0_Y	INT	RW	0	0,01 %	Y Koordinate Punkt 0	
8026:03		CC2:1_X	INT	RW	1000	0,01 %	X Koordinate Punkt 1	
8026:04		CC2:1_Y	INT	RW	1000	0,01 %	Y Koordinate Punkt 1	
8026:05		CC2:2_X	INT	RW	2000	0,01 %	X Koordinate Punkt 2	
8026:06		CC2:2_Y	INT	RW	2000	0,01 %	Y Koordinate Punkt 2	
8026:07		CC2:3_X	INT	RW	3000	0,01 %	X Koordinate Punkt 3	
8026:08		CC2:3_Y	INT	RW	3000	0,01 %	Y Koordinate Punkt 3	
8026:09		CC2:4_X	INT	RW	4000	0,01 %	X Koordinate Punkt 4	
8026:0A		CC2:4_Y	INT	RW	4000	0,01 %	Y Koordinate Punkt 4	
8026:0B		CC2:5_X	INT	RW	5000	0,01 %	X Koordinate Punkt 5	
8026:0C		CC2:5_Y	INT	RW	5000	0,01 %	Y Koordinate Punkt 5	
8026:0D		CC2:6_X	INT	RW	6000	0,01 %	X Koordinate Punkt 6	
8026:0E		CC2:6_Y	INT	RW	6000	0,01 %	Y Koordinate Punkt 6	
8026:0F		CC2:7_X	INT	RW	7000	0,01 %	X Koordinate Punkt 7	
8026:10		CC2:7_Y	INT	RW	7000	0,01 %	Y Koordinate Punkt 7	

Index	Gruppe	Name	Datentyp	Flag s	Default	Einheit	Bedeutung	WPC Gruppe
8026:11		CC2:8_X	INT	RW	8000	0,01 %	X Koordinate Punkt 8	
8026:12		CC2:8_Y	INT	RW	8000	0,01 %	Y Koordinate Punkt 8	
8026:13		CC2:9_X	INT	RW	9000	0,01 %	X Koordinate Punkt 9	
8026:14		CC2:9_Y	INT	RW	9000	0,01 %	Y Koordinate Punkt 9	
8026:15		CC2:10_X	INT	RW	10000	0,01 %	X Koordinate Punkt 10	
8026:16		CC2:10_Y	INT	RW	10000	0,01 %	Y Koordinate Punkt 10	
Ventilanpa	ssung		·		·			
801A:00	MINMAX KANAL 1		UINT8	RO	0x07 (7 _{dez})	-	Anzahl der Indexeinträge Kanal 1	CTRL + EXP
801A:01		CCMODE:1	DT0802EN03	RW	OFF	-	Aktivierung der Linearisierungsfunktion	
801A:02								
801A:03		MMTYPE:1	UINT	RW	JMP	-	Kompensationstyp: Sprung oder Linear	
801A:04								
801A:05		TRIGGER:1	UINT	RW	200 _{dez}	0,01 %	Ansprechschwelle der Überdeckungskompensation	
801A:06		MIN:1	UINT	RW	O _{dez}	0,01 %	Überdeckungskompensation Magnet 1	
801A:07		MAX:1	UINT	RW	10000 _{dez}	0,01 %	Ausgangsskalierung Magnet 1	
802A:00	MINMAX KANAL 2		UINT8	RO	0x07 (7 _{dez})	-	Anzahl der Indexeinträge Kanal 2	
802A:01		CCMODE: 2	DT0802EN03	RW	OFF	-	Aktivierung der Linearisierungsfunktion	
802A:02								
802A:03		MMTYPE:2	UINT	RW	JMP	-	Kompensationstyp: Sprung oder Linear	
802A:04								
802A:05		TRIGGER:2	UINT	RW	200 _{dez}	0,01 %	Ansprechschwelle der Überdeckungskompensation	
802A:06		MIN:2	UINT	RW	Odez	0,01 %	Überdeckungskompensation Magnet 2	
802A:07		MAX:2	UINT	RW	10000 _{dez}	0,01 %	Ausgangsskalierung Magnet 2	
Leistungse	endstufe							
801D:00	POWER STAGE KANAL 1		UINT8	RO	0x0A (10 _{dez})	-	Anzahl der Indexeinträge Kanal 1	IO_CONFIG
801D:01								

Index	Gruppe	Name	Datentyp	Flag s	Default	Einheit	Bedeutung	WPC Gruppe
801D:02		CURRENT:1	UINT	RW	1000	mA	Magnet-Nennstrom	
801D:03		DAMPL:1	UINT	RW	500	0,01 %	Dither Amplitude	
801D:04		DFREQ:1	UINT	RW	120	Hz	Dither Frequenz	
801D:05		PWM:1	DT0803EN05	RW	2604	Hz	PWM Frequenz	
801D:06								
801D:07		ACC:1	DT0802EN03	RW	ON	-	Automatische Magnetstromregler Einstellung	IO_CONFIG + EXP
801D:08								
801D:09		PPWM:1	UINT	RW	7	-	P Verstärkung Magnetstromregler	
801D:0A		IPWM:1	UINT	RW	40	-	I Verstärkung Magnetstromregler	
802D:00	POWER STAGE KANAL 2		UINT8	RO	0x0A (10 _{dez})	-	Anzahl der Indexeinträge Kanal 2	IO_CONFIG
802D:01								
802D:02		CURRENT: 2	UINT	RW	1000	mA	Magnet-Nennstrom	
802D:03		DAMPL:2	UINT	RW	500	0,01 %	Dither Amplitude	
802D:04		DFREQ:2	UINT	RW	120	Hz	Dither Frequenz	
802D:05		PWM:2	DT0803EN05	RW	2604	Hz	PWM Frequenz	
802D:06								
802D:07		ACC:2	DT0802EN03	RW	ON	-	Automatische Magnetstromregler Einstellung	IO_CONFIG + EXP
802D:08								
802D:09		PPWM:2	UINT	RW	7	-	P Verstärkung Magnetstromregler	
802D:0A		IPWM:2	UINT	RW	40	-	I Verstärkung Magnetstromregler	

6.1.5 Diagnosemeldungen

Index	Gruppe	Name	Datentyp	Flags	Default	Einheit	Bedeutung			
Diagnose Meldungen										
A000:00	DIAG		UINT8	RO	0x04 (4 _{dez})	-	Anzahl der Indexeinträge.			
A000:01		MEMORY	BOOL	RO	-	-	Betriebsbereitschaft des Gerätes			
A000:02		UNDERVOLTAGES	BOOL	RO	-	-	Versorgungsspannung ist zu niedrig			
A000:03		OVERVOLTAGES	BOOL	RO	-	-	Versorgungsspannung ist zu hoch			
A000:04		TEMPERATURE	BOOL	RO	-	-	Übertemperatur			
A010:00	DIAG 1		UINT8	RO	0x02 (2 _{dez})	-	Anzahl der Indexeinträge.			
A010:01		SHORT CIRCUIT	BOOL	RO	-	-	Kurzschluss am Ausgang 1 (Magnet A)			
A010:02		OPEN CIRCUIT	BOOL		-	-	Kabelbruch am Ausgang 1 (Magnet A)			
A020:00	DIAG 2		UINT8	RO	0x02 (2 _{dez})	-	Anzahl der Indexeinträge.			
A020:01		SHORT CIRCUIT	BOOL	RO	-	-	Kurzschluss am Ausgang 2 (Magnet B)			
A020:02		OPEN CIRCUIT	BOOL		-	-	Kabelbruch am Ausgang 2 (Magnet B)			

6.1.6 System

Index	Gruppe	Name	Datentyp	Flags	Default	Einheit	Bedeutung	WPC Gruppe
Basis Mod	uleinstellun	gen						
F800:00	BASIS		UNIT8	RO	0x03 (3 _{dez})	-	Anzahl der Indexeinträge.	SYSTEM
F800:01		IO_BASE	UINT	RW	10000	-	Wertebasis für Sollwerte, Istwerte und Parametereinstellungen	
F800:02		FUNCTION	DT0800EN03	RW	DIR	-	Modulfunktion: IND für zwei unabhängige Kanäle (Channel 1 und 2) oder DIR für einen Kanal (Channel 0) für Wegeventile.	
F800:03		SENS	DT0801EN03	RW	ON	-	Fehlerüberwachung: OFF(1), ON(2), AUTO (3)	
Allgemeine	Modulfunk	tionen						
F801:00	FUNC		UNIT8	RO	0x04 (4 _{dez})	-	Anzahl der Indexeinträge.	-
F801:01		PASSWORD		WO		-	Schreibender Zugriff auf die Herstellereinstellungen erfordert Passworteingabe an dieser Stelle.	
F801:02		SAVE		WO		-	Setzen dieses Parameters auf "1" führt zum Speichern der Parameter im internen EEPROM. Dies wird vom Gerät durch Setzen des Wertes auf 0x11111111 für einen Lese- zyklus quittiert.	
F801:03		DEFAULT		WO		-	Setzen dieses Parameters auf "1" führt zum Zurückladen der Standardeinstellungen. Dies wird vom Gerät durch Setzen des Wertes auf 0x11111111 für einen Lesezyklus quittiert.	
F801:04		LOADBACK		WO		-	Setzen dieses Parameters auf "1" führt zum Zurückladen der letzten im EEPROM gespei- cherten Parameter. Dies wird vom Gerät durch Setzen des Wertes auf 0x11111111 für ei- nen Lesezyklus quittiert.	
Herstellere	instellunge	n						
F80F:00	MANU				0x02 (2 _{dez})		Anzahl der Indexeinträge.	TERMINAL
F80F:01			UINT	RW		-	Reserviert	
F80F:02			UINT	RW		-	Reserviert	

6.1.7 Datentypen

Index	Gruppe	Name	Datentyp	Flags	Default	Einheit	Bedeutung	WPC Gruppe
Datentyper	1							
0800:01		DIRECTIONAL	DT0800EN03	RO	1	-	Umschaltung auf die Betriebsart der Baugruppe	
0800:02		INDEPENDENT	DT0800EN03	RO	2	-		
0801:01		OFF	DT0801EN03	RO	1	-	Überwachungsfunktion SENS	
0801:02		ON	DT0801EN03	RO	2	-		
0801:03		AUTO	DT0801EN03	RO	3	-		
0802:01		OFF	DT0802EN03	RO	0	-	Binäre Parameterumschaltung	
0802:02		ON	DT0802EN03	RO	1	-		
0803:01		60	DT0803EN05	RO	0x11		Frequenztabelle, Werte in 1/s	
0803:02		70	DT0803EN05	RO	0x0e			
0803:03		80	DT0803EN05	RO	0x0b			
0803:04		100	DT0803EN05	RO	0x08			
0803:05		120	DT0803EN05	RO	0x05			
0803:06		150	DT0803EN05	RO	0x02			
0803:07		200	DT0803EN05	RO	0x13			
0803:08		250	DT0803EN05	RO	0x10			
0803:09		400	DT0803EN05	RO	0x0d			
0803:0A		500	DT0803EN05	RO	0x0a			
0803:0B		600	DT0803EN05	RO	0x07			
0803:0C		800	DT0803EN05	RO	0x04			
0803:0D		1000	DT0803EN05	RO	0x01			
0803:0E		1200	DT0803EN05	RO	0x12			

Index	Gruppe	Name	Datentyp	Flags	Default	Einheit	Bedeutung	WPC Gruppe
0803:0F		1500	DT0803EN05	RO	0x0f			
0803:10		2000	DT0803EN05	RO	0x0c			
0803:11		2500	DT0803EN05	RO	0x09			
0803:12		3000	DT0803EN05	RO	0x06			
0803:13		6000	DT0803EN05	RO	0x03			
0803:14		10000	DT0803EN05	RO	0x14			
0804:01		LIN	DT0804EN03	RO	0			
0804:02		SIN	DT0804EN03	RO	1			
0805:01		JMP	DT0805EN03	RO	0		Überdeckungskompensation	
0805:02		LIN	DT0805EN03	RO	1			

6.2 Beschreibungen der SYSTEMPARAMETER

6.2.1 IO_BASE (Skalierung der Ein- und Ausgangssignale)

Für die Soll- und Istwerte kann der Referenzwert für 100% verändert werden. So kann je nach verwendetem System z.B. mit dem Wert 10000 für 0,01 % - Einheiten oder auch mit 3FFF (16383) als Referenz gearbeitet werden.

Beispiel: Ein 350 bar Druckventil soll mit 0,1 bar Auflösung angesteuert werden. IO_BASE wird auf 3500 parametriert.

Einstellbereich: 100... 32767

6.2.2 Datensicherung

Um das Gerät für die gewünschte Funktion zu parametrieren, müssen die im Kapitel 6.2 beschriebenen Einstellwerte entsprechend gesetzt werden.

Hierzu gibt es bei Verwendung des EtherCAT grundsätzlich drei Möglichkeiten:

- 1.) Nutzung des EtherCAT Master Engineering Systems und Setzen der relevanten SDO in der Onlineansicht des Slave. Nachdem alle Werte eingestellt wurden, wird über F801:01 (*Function Parameters/Save Parameters*) eine Übertragung der Werte in das geräteinterne EEPROM durchgeführt. Somit sind die Parameter remanent gespeichert.
- 2.) Definition von Aufträgen zur Datenübertragung, die beim Hochlauf der EtherCAT automatisch ausgeführt werden. Hierzu steht z.B. in TwinCAT der Tab *Startup* in der Eigenschaften-Maske der EtherCAT Slaves zur Verfügung. Dort sind alle einzustellenden Parameter nacheinander zu setzen. Die Daten sind in diesem Fall im Master und nicht im Slave gesichert.
- 3.) Auch aus dem Anwenderprogramm heraus können die Parameter über Systemfunktionen geschrieben werden. Diese Methode ist die aufwändigste, bietet aber die Möglichkeit, während des Betriebes programmgesteuert Änderungen vorzunehmen. Sie lässt sich auch mit den anderen Varianten kombinieren. Achtung: Der Befehl "Save" bewirkt Schreibvorgänge auf das interne EEPROM und sollte daher keinesfalls im Programm zyklisch aufgerufen werden.

6.2.3 Loadback

Über das LOADBACK Kommando (WPC und EtherCAT) können die zuletzt gespeicherten Parameter wieder rekonstruiert werden.

6.2.4 Default

Über das DEFAULT Kommando (WPC und EtherCAT) kann das Modul wieder auf die Werkseinstellung zurückgesetzt werden.

6.2.5 SENS (Fehlerüberwachung)

Mit diesem Kommando werden Überwachungsfunktionen (Magnetstromüberwachungen und interne Modulüberwachungen) aktiviert bzw. deaktiviert.

- ON: Alle Funktionen werden überwacht. Die erkannten Fehler können durch Deaktivieren des ENABLE Signals gelöscht werden.
- OFF: Keine Überwachungsfunktion ist aktiv.
- AUTO: Auto Reset Modus, alle Funktionen werden überwacht. Nachdem der Fehlerzustand nicht mehr anliegt, geht das Modul automatisch (nach maximal einer Sekunde) in den normalen Betriebszustand zurück.

Normalerweise ist die Überwachungsfunktion immer aktiv, da sonst keine Fehler über das READY Signal gemeldet werden. Zur Fehlersuche kann sie aber deaktiviert werden.

AUTO Modus: Das Gerät überprüft jede Sekunde den Fehlerstatus, dadurch werden die LEDs und das READY Signal kurzzeitig angesteuert.

6.2.6 FUNCTION (Wahl des Funktionsmodus)

Über dieses Kommando kann zwischen der Ansteuerung von zwei unabhängigen Ventilen mit jeweils einem Magneten (IND) und Wegeventilen mit zwei Magneten (DIR) umgeschaltet werden. Die Parameter für den Wegeventilmodus befinden sich im Kanal 0, die Kanäle 1 und 2 sind für die Ansteuerung der beiden separaten Druck- oder Drosselventile. Dies ist die Grundeinstellung des Gerätes, die als Erstes vorgenommen werden sollte.

6.3 Beschreibungen der Funktionsparameter

6.3.1 RA (Rampenzeiten)

Dieser Verstärker bietet eine Rampenfunktion für die verzögerte Übernahme neuer Sollwerte. Dabei gibt es für jeden Magnet eine eigene Zeitvorgabe für die ansteigende Vorgabe und die abfallende Vorgabe.

Einstellbereich: 1... 120000 Millisekunden

Im Independent Modus sind die Kanäle getrennt und somit sind auch die Rampenfunktionen unabhängig voneinander.

Im "DIRECTIONAL" Modus ist dies jedoch eine Vierquadranten - Rampe. Das bedeutet, beim Richtungswechsel ist sowohl die abfallende Rampe des einen Magneten aktiv als auch im Anschluss die ansteigende Rampe des anderen Magneten.

6.3.2 CCMODE (Aktivierung der Linearisierungsfunktion)

Dieses Kommando wird zur Aktivierung bzw. Deaktivierung der Linearisierungsfunktion verwendet. Durch das unmittelbare Deaktivieren ist eine einfache und schnelle Beurteilung der Linearisierung möglich.

- ON: Linearisierungsfunktion CC ist aktiv. (die Werkseinstellung der Kurvenpunkte verursacht keine Veränderung des Ausgangs)
- OFF: Linearisierungsfunktion CC ist nicht aktiv.

6.3.3 CC (Kurvenpunkte)

Eine anwenderspezifische Signalcharakteristik kann mit dieser Funktion definiert werden. Zur Aktivierung muss der Parameter CCMODE auf ON gesetzt werden.

Die Kurve wird mit Hilfe der linearen Interpolierung berechnet: **y=(x-x1)*(y1-y0)/(x1-x0)+y1**. Die Auswirkungen der Linearisierung können über die Prozessdaten beurteilt werden.

Für jeden Magneten stehen 10 Punkte zur Definition zur Verfügung. Diese werden durch einen X-Wert und einen Y-Wert festgelegt. Das Eingangssignal der Funktion wird auf der X-Achse abgebildet, der entsprechende Ausgangswert auf der Y-Achse angegeben.

Einstellbereich: 0... 10000 (IND) bzw. -10000... 10000 (DIR)

1 Darstellung im WPC

6.3.4 MMTYPE (Typ der Kompensation)

Die positive Überdeckung eines Ventils kann auf verschiedene Art kompensiert werden. Es kann einerseits ein Sprung auf den Kompensationswert an der Aktivierungsschwelle gemacht werden (JMP). Der Ausgangsstrom kann andererseits auch linear bis zur Aktivierungsschwelle auf den Kompensationswert erhöht werden (LIN). Diese Variante ist zu empfehlen, wenn das angesteuerte Ventil im geschlossenen Regelkreis betrieben wird.

6.3.5 TRIGGER (Ansprechschwelle)

Über den Trigger wird definiert, wann die MIN Einstellung aktiv wird. Es wird so ein Unempfindlichkeitsbereich um den Nullpunkt definiert.

Einstellbereich: 0... 3000

6.3.6 MIN (Kompensation der Überdeckung)

Mit dem MIN Wert wird die Überdeckung (Totzone im Ventil) kompensiert. Wird die Trigger Schwelle überschritten, ist dieser Wert die Mindestansteuerung für das Ventil. *Einstellbereich:* 0... 6000

ACHTUNG: Wird der MIN Wert zu hoch eingestellt, wirkt sich dies auf den minimalen Ausgangsstrom (minimale Geschwindigkeit) aus, der dann nicht mehr einstellbar ist.

6.3.7 MAX (Ausgangsskalierung)

Mit dem MAX Wert wird das Ausgangssignal (die maximale Ventilansteuerung) im Bedarfsfall angepasst. *Einstellbereich:* 5000... 10000

Abb.2: Modus IND, ein Magnet je Kanal

6.4 Beschreibungen der ENDSTUFENPARAMETER

6.4.1 CURRENT (Nominaler Ausgangsstrom)

Über diesen Parameter wird der Nennstrom des Magneten eingestellt. Ditheramplitude und auch MIN/MAX beziehen sich immer auf diesen Nennstrom.

Einstellbereich: 500... 3000

6.4.2 DAMPL (Ditheramplitude)

Einstellung der Amplitude des Dithersignal¹ bezogen auf den Nennstrom. *Einstellbereich: 0... 3000*

ACHTUNG: Wenn die PWM Frequenz kleiner 500 Hz ist, dann sollte die Ditheramplitude auf null gesetzt werden.

6.4.3 DFREQ (Ditherfrequenz)

Wahl der Frequenz des Dithersignal. *Einstellbereich: 60... 400*

ACHTUNG: Die Parameter PPWM und IPWM beeinflussen die Wirkung der Dithereinstellung. Nach der Dither Optimierung sollten diese Parameter nicht mehr verändert werden.

Wenn keine Einstelldaten von Ventilhersteller vorliegen, kann wie folgt vorgegangen werden: Als erstes wird die Amplitude anhand der Hysterese des Ventils eingestellt. Danach wird mit einer geringen Ditherfrequenz begonnen und diese schrittweise erhöht, so dass man kein Oszillieren (macht sich oft durch ein Brummen bemerkbar) am Antrieb festzustellen ist.

Alternativ kann auch die PWM Frequenz als Dither verwendet werden. In diesem Fall ist die Ditheramplitude auf Null zu stellen und es wird eine relativ niedrige PWM Frequenz eingestellt (typisch: 60... 250 Hz). Auch hier sollte nach der Einstellung kein Brummen am Antrieb feststellbar sein.

¹ Bei dem Dither handelt es sich um ein Brummsignal, das dem Stromsollwert überlagert wird. Der Dither wird durch Frequenz und Amplitude definiert. Die Ditherfrequenz sollte nicht mit der PWM Frequenz verwechselt werden. In den Dokumentationen mancher Ventile wird von einem Dither gesprochen und es ist aber die PWM Frequenz gemeint. Zu erkennen ist dies durch die fehlende Angabe der Ditheramplitude.

6.4.4 **PWM (PWM Frequenz)**

Die Frequenz kann in vorgegebenen Stufen definiert werden. Die optimale Frequenz ist ventilabhängig.

Auswahlmöglichkeiten: 60 / 70 / 80 / 100 / 120 / 150 / 200 / 250 / 400 / 500 / 600 / 800 / 1000 / 1200 / 1500 / 2000 / 2500 / 3000 / 6000 / 10000

ACHTUNG: Bei niedrigen PWM Frequenzen sollten die Parameter PPWM und IPWM angepasst werden, da die längeren Totzeiten die Stabilität des Regelkreises verringern.

ACHTUNG: Bei ACC = ON werden die Parameter des PI Stromreglers abhängig von der PWM Frequenz automatisch geändert.

6.4.5 ACC (Automatische Einstellung des Magnetstromreglers)

Dieser Parameter aktiviert bzw. deaktiviert die automatische Parametrierung des Magnetstromreglers.

- ON:Die Werte für PPWM und IPWM werden aufgrund der gewählten PWM Frequenz angepasst.Die Parameter PPWM und IPWM können in diesem Fall nicht vom Anwender verändert werden.
- OFF: Manuelle Einstellung von PPWM und IPWM, es findet keine automatische Anpassung statt.

6.4.6 **PPWM (Magnetstromregler P Anteil)**

Einstellbereich: 0... 300

6.4.7 IPWM (Magnetstromregler | Anteil)

Einstellbereich: 0... 100

Mit diesen beiden Kommandos wird der PI Stromregler für die Magnete parametriert.

Achtung: Ohne entsprechende Messmöglichkeiten und Erfahrungen sollten diese Parameter nicht verändert werden. Steht der Parameter ACC auf ON, so werden diese Einstellungen automatisch durchgeführt.

6.5 Prozessdaten (Monitoring)

Die Prozessdaten sind die variablen Größen im Gerät, die kontinuierlich beobachtet werden können. Diese Daten stehen als PDOs oder im WPC als Prozessdaten zur Verfügung.

Kommando	Parameter	Einheit	Funktion
W	Aktiver Sollwert	%	DIR
С	Signal nach Linearisierungsfunktion und Rampe	%	
U	Stellgröße nach Ventilanpassung	%	
IA	Magnetstrom Magnet A	mA	
IB	Magnetstrom Magnet B	mA	
W1	Aktiver Sollwert Kanal 1	%	IND
C1	Signal nach Linearisierungsfunktion und Rampe Kanal 1	%	
U1	Stellgröße nach Ventilanpassung Kanal 1	%	
I1	Magnetstrom Magnet 1	mA	
W2	Aktiver Sollwert Kanal 2	%	
C2	Signal nach Linearisierungsfunktion und Rampe Kanal 2	%	
U2	Stellgröße nach Ventilanpassung Kanal 2	%	
12	Magnetstrom Magnet 2	mA	

7 Schnelleinstieg Konfiguration und Parametrierung

Im Folgenden werden beispielhaft die grundlegenden Schritte anhand des Engineeringsystems "TwinCAT 3.1" der Fa. Beckhoff erklärt.

Für andere Master und Programmierumgebungen ist die prinzipielle Vorgehensweise gleich.

Nach der grundlegenden Konfiguration des Gerätes, bei der die EtherCAT-Verbindung hergestellt und die Prozessdatenobjekte aktiviert werden, folgt die Parametrierung der Gerätefunktion. Hier sollen dafür zwei alternative Varianten beschrieben werden, nämlich die ausschließliche Verwendung der EtherCAT SDOs (Parametrierung ohne WPC) und die Vorgehensweise bei Verwendung des Programms WPC-300.

7.1 Konfiguration

Zunächst muss die Gerätebeschreibungsdatei "PAM-199-P-ETC.xml", die sogenannte ESI-Datei, in das lokale Verzeichnis der Programmiersoftware eingefügt werden.

Für TwinCAT ist dies bei einer Standardinstallation der Pfad "C:\TwinCAT\3.1\Config\lo\EtherCAT".

Das Gerät muss für die folgenden Schritte mit Spannung versorgt sein und die Schnittstelle "IN" (obere RJ-45 Buchse der PAM) mit der EtherCAT-fähigen Netzwerkkarte des Rechners verbunden sein.

Nach Geräten suchen:

Nach Auswahl der richtigen Netzwerkkarte sollte der angeschlossene Verstärker gefunden werden. Die Nachfrage, ob *Free Run* aktiviert werden soll, kann bestätigt werden.

Ein Doppelklick auf die gefundene *Box* liefert folgendes Bild:

Solution Explorer 🔹 🕂 🗙	TwinCAT Project77 ×	
	General EherCAT DC Process Data Statup CoE - Online Online Name: Box 1 (PAM-199-PETC) Id: 1 Object Id: 0:0302001 Type: PAM-199-PETC Comment: Image: Comment id: Image: Comment id: <t< td=""><td></td></t<>	

Unter dem Tab *Process Data* kann man nun die zu übertragenden PDOs festlegen.

Hier ist zu entscheiden, ob das Gerät für ein Wegeventil (Funktion *Directional Mode*) oder unabhängige Funktionen (Funktion *Independent Mode*) verwendet wird.

Also müssen den Sync Managern die entsprechenden PDOs aus der Liste zugewiesen werden.

Hierzu nacheinander die *Sync Manager* für *Outputs* (= Steuersignale an das Modul) und *Inputs* (= Rückmeldungen über interne Werte des Verstärkers) anwählen und Folgendes zuweisen:

Für Outputs die Gruppe 0x1600, wenn Directional Mode gewünscht ist. Oder Gruppe 0x1601 für den Independent Mode.

Für *Inputs* die Gruppe 0x1A00, wenn *Directional Mode* gewünscht ist. Oder Gruppe 0xA002 für den *Independent Mode*. Möchte man mehr Informationen über die internen Signale empfangen, sollte zusätzlich die Gruppe 0x1A02 (*Directional*) oder 0x1A03 (*Independent*) aktiviert werden.

Um die Einstellung zu vereinfachen, wurde für TwinCAT eine Vorauswahl eingerichtet, die man mit Hilfe des Menüs "Predefined PDO Assignment" abrufen kann. So werden diese Einstellungen für Ein- und Ausgänge automatisch vorgenommen. Das Ergebnis sieht danach folgendermaßen aus:

Fall 1: Directional Mode (Extended)

Sync N	lanager:				Sync N	lanager:		
SM	Size	Туре	Flags		SM	Size	Туре	Flags
0	128	MbxOut			0	128	MbxOut	
1	128	MbxIn			1	128	MbxIn	
2		Outputs			2	6	Outputs	
3	4	Inputs			3	4	Inputs	
PDO A	ssignmer	111 nt (0x1C12):	•]	PDO A	ssignmer	"" t (0x1C13):	•
₩ 0x1		0x1 0x1 0x1 0x1	A01 (exc A02 A03 (exc	luded by 0x	:1A00) :1A00)			

Fall 2: Independent Mode (Extended)

Sync N	lanager:			Sync I	Manager:		
SM	Size	Туре	Flags	SM	Size	Туре	Flags
0	128	MbxOut		0	128	MbxOut	
1	128	MbxIn		1	128	MbxIn	
2	8	Outputs		2	8	Outputs	
3	26	Inputs		3		Inputs	
		III	•	RDO 4	Assignmer	III	•
FDU A	ssignmer	it (UKICIZ):		1007	taalgi iinei	it (uk to to).	
0x1	0×1600				1A00		
🔽 ()x1	601			V Ux	1401		
				₩ Cx	1A02		

Anschließend kontrollieren, ob der Haken bei

gesetzt ist und die Schaltfläche 🕏 zum Übertragen der Information betätigen.

Die Signale des Gerätes werden jetzt im Projektbaum angezeigt:

Es ist möglich, hier *online* Werte zu setzen (bei den *Outputs*) und die Reaktion des Gerätes durch die anderen Signale zu beobachten.

Beispiel: Setzen des Bits "Enable" -> Rückmeldung des Zustands "Ready" für den betreffenden Kanal, wenn kein Fehler vorliegt und der passende Betriebsmodus (*directional / independent*) parametriert wurde.

Zur späteren Verwendung in einem SPS – Programm werden die Signale aus dieser Ansicht mit den betreffenden Aus- und Eingängen der Programmbausteine verknüpft.

Hinweis:

Sollte die Übertragung der Werte nicht funktionieren, ist der Zustand der EtherCAT – *State Machine* im Tab *Online* zu prüfen. Der Zustand sollte "OP" = Normalbetrieb sein. Auch die LEDs auf der Gerätefront dienen der Diagnose: FB-RUN sollte jetzt leuchten, LINK-ACT-IN blinken.

7.2 Parametrierung ohne WPC

Der Tab CoE – Online bietet die Möglichkeit, die SDOs des Gerätes zu beobachten und hierdurch die Parameter einzustellen.

eneral EtherC	AT DC Process Data Startu	p CoE - Online O	nline		
Update	List 📝 Auto Update	🛛 Single Update 📃	Show Offline Data		
Advanc	ed				
Add to Sta	online Data	Module OD (A	oE Port): 0		
Index	Name	Flags	Value	Unit	
1000	Device type	RO	0x00001389 (5001)		
1001	Error register	RO	0x00 (0)		
1008	Device name	RO	PAM-199-P-ETC		
1009	Hardware version	RO	10		
100A	Software version	RO	10		
主 1018:0	Identity		> 4 <		
± 10F1:0	Error Settings		> 2 <		
10F8	Timestamp Object	RW P	0x2b897b5bf38		
÷- 1600:0	Directional Mode Outputs		> 3 <		
主 1601:0	Independent Mode Outputs		> 6 <		
主 1A00:0	Directional Mode Inputs		> 13 <		
主 1A01:0	Independent Mode Inputs		> 15 <		
± 1A02:0	Directional Mode Signals		> 5 <		
± 1A03:0	Independent Mode Signals		> 8 <		

Es ist zu empfehlen, *Auto Update* anzuwählen, damit man während der Einstellarbeiten kontrollieren kann, ob die Werte korrekt übernommen werden. In dieser Ansicht sollte sich der Eintrag 10F8 *Timestamp Object* permanent ändern, ansonsten steht die Online – Verbindung nicht.

Es werden nun nacheinander die folgenden Indices bearbeitet:

F800:0 öffnen: FUNCTION (F800:02) auswählen und ggf. SENS oder auch IOBASE ändern. Die Beschreibung dieser Parameter finden Sie im Kapitel 6.2.

Die weiteren Werte, die eingestellt werden müssen, richten sich nach der Wahl des FUNCTION-Parameters:

Directional:

Zunächst in der Gruppe 800D:0 (Directional Power Stage) die Einstellung der Endstufe vornehmen. Unbedingt nötig: CURRENT

Zu empfehlen: DAMPL / DFREQ / PWM nach den Angaben des Ventilherstellers. Für Experten, nur bei Bedarf: ACC / PPWM / IPWM

Danach ist die Gruppe 800A:0 (Directional Output Charcteristic) zu bearbeiten:

Überdeckungskompensation, Ausgangsskalierung, ggf. die Aktivierung einer Kurvenfunktion über den Parameter CCMODE. Nur wenn diese aktiviert wurde, haben die Werte in der Gruppe 8006:0 eine Auswirkung und sind entsprechend einzustellen.

Falls eine Rampe gewünscht ist, kann diese über die Parameter in der Gruppe 8002:0 eingestellt werden. Die übrigen Parameter, insbesondere diejenigen für die Funktion *Independent*, brauchen in der Regel nicht verändert werden.

Independent:

Möchte man nur einen Kanal nutzen, reicht es, die Parameter dieses Kanals einzustellen. Der zweite Ausgang bleibt inaktiv, wenn das zugehörende *Enable*-Bit (siehe vorangehendes Kapitel) nicht gesetzt wird. Zunächst in den Gruppen 801D:0 (*Channel 1 Power Stage*) und 802D:0 (*Channel 2 Power Stage*) die Einstellung der Endstufen vornehmen.

Unbedingt nötig: CURRENT

Zu empfehlen: DAMPL / DFREQ / PWM nach den Angaben des Ventilherstellers.

Für Experten, nur bei Bedarf: ACC / PPWM / IPWM

Danach ist die Gruppe 801A:0 (Channel 1 Output Characteristic) und 802A:0 (Channel 2 Output Characteristic) zu bearbeiten:

Überdeckungskompensation, Ausgangsskalierung, ggf. die Aktivierung einer Kurvenfunktion über den Parameter CCMODE. Nur wenn diese aktiviert wurde, haben die Werte in der Gruppen 8016:0 oder 8026:0 eine Auswirkung und sind entsprechend einzustellen.

Falls eine Rampe gewünscht ist, kann diese über die Parameter in der Gruppe 8012:0 für den Kanal 1 oder 8022:0 für den Kanal 2 eingestellt werden.

Die übrigen Parameter, insbesondere diejenigen für die Funktion *Directional*, brauchen in der Regel nicht verändert werden.

Wichtig für beide Funktionsarten:

Nach dem Einstellen der gewünschten Werte und ggf. Versuchen, ob sich das System damit wunschgemäß verhält, ist auf jeden Fall der Parameter F801:02 auf "1" zu setzen:

E F801:	0 Function Parameters		> 4 <
- F8	01:01 Vendor Settings Passwe	ord RW	0x0000000 (0)
F8	01:02 Save Parameters	RW	0x00000000 (0)
- F8	01:03 Set Parameters to Defa	ult RW	0x0000000 (0)
F8	01:04 Loadback Parameters	RW	0x0000000 (0)

Die erfolgreiche Ausführung des Kommandos wird signalisiert, indem die Rückmeldung für einen Lesezyklus "0x11111111" anzeigt.

Hierdurch werden die Einstellungen remanent im modulinternen EEPROM abgespeichert. Unterbleibt das Speichern, sind die eingestellten Werte beim Abschalten der Baugruppe verloren.

7.3 Parametrierung mit WPC

Es ist auch bei dieser Baugruppe weiterhin möglich, das Programm WPC über die USB-Schnittstelle zu nutzen.

Die Vorteile liegen in einer strukturierten Anzeige der Parameter und damit besserer Benutzerführung. Des Weiteren werden Kennlinien graphisch angezeigt, was eine Plausibilitätskontrolle ermöglicht.

Die einzelnen Gruppen können über den Parameter "Mode" umgeschaltet werden. Hierbei ist die Reihenfolge System -> IO_CONFIG -> CONTROL zu empfehlen.

In der Gruppe System kann zunächst die gewünschte Sprache eingestellt werden und die Funktion (DIR/IND).

Dies hat zur Folge, dass in den übrigen Gruppen nur die Parameter erscheinen, die zu der gewünschten Funktion gehören.

Möchte man eine einfache Parametrierung der Basisfunktionalität, sollte der Parameter "USER" auf STD = Standardansicht gesetzt bleiben. Weitergehende Funktionen, d.h. die Kennlinieneingabe und die Einstellung des Magnetstromreglers, werden dann nicht angezeigt.

Nach Eingabe der Parameter ist auch bei Verwendung von WPC ein Speichern erforderlich, ausgelöst durch den "Save"-Knopf neben der Parameterliste.

Ein Betrieb ganz ohne EtherCAT ist im "Remote Control" Modus (Monitorfenster) ebenfalls möglich. Dieser kann für Funktionstests ohne SPS eingesetzt werden.

8 Anhang

8.1 Überwachte Fehlerquellen

Folgende mögliche Fehlerquellen werden bei SENS = ON / AUTO fortlaufend überwacht:

Quelle	Fehler	Verhalten
Magnet A / 1 an PIN 3 / 4 Magnet B / 2 an PIN 1 / 2	Drahtbruch Kurzschluss	Die Endstufe wird deaktiviert.
EEPROM (beim Einschalten)	Datenfehler	Die Endstufe wird deaktiviert. Die Endstufe kann nur aktiviert werden, indem die Parameter neu gespeichert werden!
EtherCAT Kommunikation	Unterbrechung	Die Endstufe wird deaktiviert.

8.2 Fehlersuche

Mit der blinkenden READY LED und READY Signal = OFF wird signalisiert, dass vom Modul ein Fehler erkannt wurde. Fehler können sein:

- Kabelbruch oder falsche Verdrahtung zu den Magneten.
- Interner Datenfehler: Kommando SAVE ausführen, um den Datenfehler zu löschen. System hat wieder die DEFAULT Daten geladen.

Mögliche Fehler können über den Bus (siehe Tx PDOs) oder im Monitor des WPC-Programms ausgewertet werden. Dort stehen auch weitere Statusmeldungen und Warnungen zur Verfügung.

9 Notizen